Algorithmic learning theory : 8th international workshop, ALT '97, Sendai, Japan, October 6-8, 1997 : proceedings
著者
書誌事項
Algorithmic learning theory : 8th international workshop, ALT '97, Sendai, Japan, October 6-8, 1997 : proceedings
(Lecture notes in computer science, 1316 . Lecture notes in artificial intelligence)
Springer, c1997
大学図書館所蔵 全47件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book constitutes the refereed proceedings of the 8th International Workshop on Algorithmic Learning Theory, ALT'97, held in Sendai, Japan, in October 1997.
The volume presents 26 revised full papers selected from 42 submissions. Also included are three invited papers by leading researchers. Among the topics addressed are PAC learning, learning algorithms, inductive learning, inductive inference, learning from examples, game-theoretical aspects, decision procedures, language learning, neural algorithms, and various other aspects of computational learning theory.
目次
Program error detection/correction: Turning PAC learning into Perfect learning.- Team learning as a game.- Inferability of recursive real-valued functions.- Learning of R.E. Languages from good examples.- Identifiability of subspaces and homomorphic images of zero-reversible languages.- On exploiting knowledge and concept use in learning theory.- Partial occam's razor and its applications.- Derandomized learning of boolean functions.- Learning DFA from simple examples.- PAC learning under helpful distributions.- PAC learning using Nadaraya-Watson estimator based on orthonormal systems.- Monotone extensions of boolean data sets.- Classical Brouwer-Heyting-Kolmogorov interpretation.- Inferring a system from examples with time passage.- Polynomial time inductive inference of regular term tree languages from positive data.- Synthesizing noise-tolerant language learners.- Effects of Kolmogorov complexity present in inductive inference as well.- Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries.- Oracles in ? 2 p are sufficient for exact learning.- Exact learning via teaching assistants (Extended abstract).- An efficient exact learning algorithm for ordered binary decision diagrams.- Probability theory for the Brier game.- Learning and revising theories in noisy domains.- A note on a scale-sensitive dimension of linear bounded functionals in Banach Spaces.- On the relevance of time in neural computation and learning.- A simple algorithm for predicting nearly as well as the best pruning labeled with the best prediction values of a decision tree.- Learning disjunctions of features.- Learning simple deterministic finite-memory automata.- Learning acyclic first-order horn sentences from entailment.- On learning disjunctions of zero-one threshold functions with queries.
「Nielsen BookData」 より