Introduction to the quantum Yang-Baxter equation and quantum groups : an algebraic approach
著者
書誌事項
Introduction to the quantum Yang-Baxter equation and quantum groups : an algebraic approach
(Mathematics and its applications, v. 423)
Kluwer Academic Publishers, c1997
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 281-288
Includes index
内容説明・目次
内容説明
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.
目次
Foreword. Preface. Introduction. 1. Algebraic Preliminaries. 2. The Quantum Yang-Baxter Equation (QYBE). 3. Categories of Quantum Yang-Baxter Modules. 4. More on the Bialgebra Associated to the QYBE. 5. The Fundamental Example of a Quantum Group. 6. Quasitriangular Structures and the Double. 7. Coquasitriangular Structures. 8. Some Classes of Solutions. 9. Categorical Constructions. Appendices: A-Prerequisites. A.1. The Ground Ring k and Basic k-Linear Maps. A.2. Algebras, Coalgebras, and Their Representations. A.3. Various Notations Related to the QYBE. A.4. Some Results from Linear Algebra. References. Index.
「Nielsen BookData」 より