Algebraic homogeneous spaces and invariant theory
著者
書誌事項
Algebraic homogeneous spaces and invariant theory
(Lecture notes in mathematics, 1673)
Springer-Verlag, c1997
大学図書館所蔵 全88件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [138]-145) and index
内容説明・目次
内容説明
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.
目次
Introduction . . . . . . . . . . . . . . . . . . . . . . Chapter One - Observable Subgroups 1. Stabilizer Subgroups . . . . . . . . . . . . . . . 2. Equivalent Conditions. . . . . . . . . . . . . . . 3. Observable Subgroups of Reductive Groups . . . . . 4. Finite Generation of kAEG/HUE. . . . . . . . . . . . Appendix: On Valuation Rings. . . . . . . . . 5. Maximal Unipotent Subgroups. . . . . . . . . . . . Bibliographical Note. . . . . . . . . . . . . . . . . . Chapter Two - The Transfer Principle 6. Induced Modules. . . . . . . . . . . . . . . . . . Appendix: Affine Quotients and induced modules 7. Induced Modules and Observable Subgroups . . . . . Appendix: On a Theorem of F. A. Bogomolov . . 8. Counter-examples . . . . . . . . . . . . . . . . . 9. The Transfer Principle . . . . . . . . . . . . . . 10. The Theorems of Roberts and Weitzenb'ck. . . . . . 11. Geometric Examples . . . . . . . . . . . . . . . . A. Multiplicity-free actions . . . . . . . . B. Affine Geometry . . . . . . . . . . . . . C. Invariants of the Orthogonal Group. . . . D. Euclidean Geometry. . . . . . . . . . . . E. Hilbert's Example. . . . . . . . . . . . Chapter Three - Invariants of Maximal Unipotent Subgroups 12. The Representations E( ) . . . . . . . . . . . . . 13. An Example: The General Linear Group . . . . . . . A. Straightening . . . . . . . . . . . . . . B. U - invariants. . . . . . . . . . . . . . C. Results of K. Pommerening . . . . . . . . 14. The Relationship between A and G AU. . . . . . . . 15. The Algebra grA. . . . . . . . . . . . . . . . . . 16. Finite Generation and U-invariants . . . . . . . . A. Algebras. . . . . . . . . . . . . . . . . B. Modules . . . . . . . . . . . . . . . . . 17. S-varieties. . . . . . . . . . . . . . . . . . . . 18. Flat Deformations and Normality. . . . . . . . . . Bibliographical Note. . . . . . . . . . . . . . . . . . Chapter Four - Complexity 19. Basic Principles . . . . . . . . . . . . . . . . . Appendix: On Quotient Spaces . . .. . . . . 20. Unique Factorization Domains . . . . . . . . . . . A. c(X) = 0. . . . . . . . . . . . . . . . . B. c(X) = 1. . . . . . . . . . . . . . . . . 21. Complexity and Finite Generation . . . . . . . . . A. Statement of Results. . . . . . . . . . . B. Proof of Theorem 21.1 . . . . . . . . . . 22. Spherical Subgroups. . . . . . . . . . . . . . . . 23. Finite Generation of Induced Modules . . . . . . . A. Condition (FM). . . . . . . . . . . . . . B. Epimorphic Subgroups. . . . . . . . . . . Bibliographical Note. . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . List of Symbols. . . . . . . . . . . . . . . . . . . . . . Index. . . . . . . . . . . . . . . . . . . . . . . . . . .
「Nielsen BookData」 より