書誌事項

Mesoscopic physics and electronics

T. Ando ... [et al.]

(Nanoscience and technology)

Springer, c1998

大学図書館所蔵 件 / 37

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea- ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog- raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal- oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

目次

1. Introduction - Mesoscopic Systems.- 1.1 Introduction.- 1.2 Length Scales Characterizing Mesoscopic Systems.- 1.2.1 Fermi Wavelength.- 1.2.2 Mean Free Path.- 1.2.3 System Size.- 1.2.4 Thermal Diffusion Length and Thouless Energy.- 1.2.5 Phase Coherence Length.- 1.2.6 Diffusive Regime and Ballistic Regime.- 1.2.7 Quantum Wires, Dots, and Antidots.- 1.2.8 Anderson Localization.- References.- 1.3 Landauer's Formula.- 1.3.1 Conductance and Transmission Probability.- 1.3.2 Some Applications.- a. Universal Conductance Fluctuations.- b. Conductance Quantization.- References.- 1.4 Fluctuations and Aharonov-Bohm Effect.- 1.4.1 Aharonov-Bohm Effect.- 1.4.2 Universal Conductance Fluctuations.- 1.4.3 Persistent Current.- 1.4.4 Fluctuations of Orbital Susceptibility.- References.- 1.5 Ballistic Electron Transport.- 1.5.1 Quantization of Conductance.- 1.5.2 Interaction Effects on Conductance Quantization.- 1.5.3 Magnetic Focusing.- 1.5.4 Bend Resistance and Transfer Resistance.- 1.5.5 Anomaly in Weak-Field Hall Effect.- References.- 1.6 Coulomb Blockade.- 1.6.1 Introduction.- 1.6.2 Single Electron Tunneling.- 1.6.3 SET Oscillation.- 1.6.4 Tunneling in Superconducting Junctions.- 1.6.5 Coulomb Blockade in Quantum Dots.- 1.6.6 Resonant Transmission and Kondo Effect.- 1.6.7 KTB Transition in Junction Network.- References.- 2. Transport in Quantum Structures.- 2.1 Tomonaga-Luttinger Liquid in Quantum Wires.- 2.1.1 Introduction.- 2.1.2 Tomonaga-Luttinger Liquid.- 2.1.3 Conductance of Finite-Length Quantum Wire.- 2.1.4 Quantized Value of Conductance.- 2.1.5 Mott-Hubbard Insulator.- References.- 2.2 Quantum Wires.- 2.2.1 Magnetoresistance and Boundary-Roughness Scattering.- 2.2.2 One-Dimensional Electron in Slowly Varying Potential.- 2.2.3 Interaction Effects in Quantum Wires.- References.- 2.3 Magnetophonon Resonance in Quantum Wires.- 2.3.1 Introduction.- 2.3.2 Theory.- 2.3.3 Experiments.- References.- 2.4 Quantum Dots and Artificial Atoms.- 2.4.1 Quantum Dots Containing a Few Electrons.- 2.4.2 Atom-like Properties - Shell Filling.- 2.4.3 Atom-like Properties - Spin Effects.- References.- 2.5 Antidot Lattices - Classical and Quantum Chaos.- 2.5.1 Antidot Lattices.- 2.5.2 Commensurability Peaks.- 2.5.3 Aharonov-Bohm Type Oscillation.- 2.5.4 Altshuler-Aronov-Spivak Oscillation.- 2.5.5 Scattering Matrix Formalism.- 2.5.6 Anderson Localization.- References.- 2.6 Electric and Magnetic Lateral Superlattices.- 2.6.1 Lateral Modulation.- 2.6.2 Weiss Oscillation.- 2.6.3 Magnetic Weiss Oscillation.- References.- 2.7 Terahertz Spectroscopy of Nanostructures.- 2.7.1 Introduction.- 2.7.2 Swept-Frequency THz Spectroscopy.- 2.7.3 Electronic States in Single Quantum Wire Structure.- 2.7.4 Blackbody Radiation from Hot Carriers.- 2.7.5 Summary.- References.- 2.8 Wannier-Stark Effect in Transport.- 2.8.1 Wannier-Stark Effect.- 2.8.2 Zener Tunneling and Wannier-Stark States.- 2.8.3 Measurements of Zener Current through a p-i-n Diode.- References.- 3. Quantum Hall Effect.- 3.1 Crossover from Quantum to Classical Regime.- 3.1.1 Bulk Versus Edge Current Picture.- 3.1.2 Edge Transport and Bulk States.- 3.1.3 Voltage Distribution.- 3.1.4 Summary.- References.- 3.2 Edge States and Nonlocal Effects.- 3.2.1 What Is Edge Current?.- 3.2.2 Halperin's Edge Current.- 3.2.3 Local Current Distribution.- 3.2.4 Buttiker's Edge Current.- 3.2.5 Nonlocal Resistance.- References.- 3.3 Magnetocapacitance and Edge States.- 3.3.1 Spatial Dispersion of Edge States.- 3.3.2 Edge States Width and Magnetocapacitance.- References.- 4. Electron-Photon Interaction in Nanostructures.- 4.1 Introduction.- References.- 4.2 Theory of Electron-Photon Interaction.- 4.2.1 Electron and Hole Operators in Insulating Solids.- 4.2.2 Effective-Mass Approximation.- 4.2.3 Optical Matrix Elements.- 4.2.4 Quantum States in Nanostructures.- 4.2.5 Quantum Optical Phenomena in Nanostructures.- References.- 4.3 Electron-Photon Interaction in Microcavities.- 4.3.1 Concept of Spontaneous Emission Control.- a. Outline.- b. Spontaneous Emission in a Single Mode.- c. Spontaneous Emission in Free Space.- d. Controlled Spontaneous Emission.- 4.3.2 Experimental Results of Spontaneous Emission Control.- 4.3.3 Cavity-Polariton Effects.- References.- 4.4 Photonic Crystals.- 4.4.1 Photonic Crystals and Spontaneous Emission Control.- 4.4.2 Band Structure of Photonic Crystals.- 4.4.3 Technologies of Photonic Crystals.- References.- 4.5 Microcavity Surface Emitting Lasers.- 4.5.1 Overview.- 4.5.2 Technology for Low Threshold Surface Emitting Lasers.- 4.5.3 New Materials for Surface Emitting Lasers.- References.- 4.6 Toward Lasers of the Next Generation.- 4.6.1 Quantum Dot Lasers.- 4.6.2 Microcavity Quantum Dot Lasers.- References.- 5. Quantum-Effect Devices.- 5.1 Introduction.- References.- 5.2 Electron-Wave Reflection and Resonance Devices.- 5.2.1 Introduction.- 5.2.2 Epitaxial Growth of CoSi2/CaF2 on Si.- 5.2.3 Resonant Tunneling Transistor.- 5.2.4 Observation of Hot Electron Interference.- 5.2.5 Field-Effect Quantum Device.- References.- 5.3 Electron-Wave Coherent Coupling Devices.- 5.3.1 Coherent Coupling in Double Quantum Well.- 5.3.2 Electron Directional Coupler.- 5.3.3 Coherent Oscillation Devices.- 5.3.4 Bloch Oscillation Devices.- 5.3.5 Coherent Oscillations in ac-Field.- References.- 5.4 Electron-Wave Diffraction Devices.- 5.4.1 Electron Wavefront and Its Manipulation.- 5.4.2 Coherence of Electron Wave.- a. Phase Breaking Time Required for Interference.- b. Energy Sharpness Required for Interference.- c. Phase Breaking Time Estimated.- d. Coherence of Electron Wave.- 5.4.3 Diffraction of Hot Electron Wave.- References.- 5.5 Devices Using Ultimate Silicon Technology.- 5.5.1 Future of VLSI Device Technology.- 5.5.2 Silicon Single-Electron Devices.- 5.5.3 Integration of MOS and Single-Electron Devices.- References.- 5.6 Circuit Systems Using Quantum-Effect Devices.- 5.6.1 Information Processing Architectures.- 5.6.2 Binary-Decision-Diagram Circuits.- 5.6.3 Local-Interaction Logic Circuits.- 5.6.4 Analog Computation Systems.- 5.6.5 MOBILE Circuit Systems.- 5.6.6 RHET Circuit Systems.- References.- 6. Formation and Characterization of Quantum Structures.- 6.1 Introduction.- References.- 6.2 Quantum Wires and Dots by MOCVD (I).- 6.2.1 Quantum Wires on Vicinal Surfaces.- 6.2.2 Quantum Dot Formation on Masked Substrates.- References.- 6.3 Quantum Wires and Dots by MOCVD (II).- 6.3.1 Quantum Wires by Selective MOCVD.- 6.3.2 Quantum Dots by Selective MOCVD.- 6.3.3 Quantum Dots in 2D V-Grooves.- 6.3.4 Self-Assembled InGaAs Quantum Dots.- 6.3.5 Use of Spinodal Phase Separation.- References.- 6.4 Quantum Wires on Vicinal GaAs (110) Surfaces.- 6.4.1 Introduction.- 6.4.2 Step Structures.- 6.4.3 AlGaAs Quantum Wires.- 6.4.4 GaAs Quantum Wires.- References.- 6.5 Tilted T-Shaped and (775)B Quantum Wires.- 6.5.1 Introduction.- 6.5.2 GaAs/Al0.3Ga0.7As Tilted T-shaped QWRs.- 6.5.3 Fabrication of GaAs/A10.3Ga0.7As Tilted T-QWRs.- a. Cathodoluminescence Measurements.- b. Calculation of Electron and Hole States in T-QWRs.- 6.5.4 Naturally Formed QWRs on (775)B GaAs Substrates.- a. MBE Growth of GaAs/(GaAs)m(AlAs)n QWRs.- b. Photoluminescence Measurements.- References.- 6.6 SiGe Quantum Structures.- 6.6.1 Band Modification by SiGe/Si Heterostructures.- 6.6.2 SiGe Quantum Wells.- 6.6.3 SiGe Quantum Wires and Dots.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ