Two classes of Riemannian manifolds whose geodesic flows are integrable
Author(s)
Bibliographic Information
Two classes of Riemannian manifolds whose geodesic flows are integrable
(Memoirs of the American Mathematical Society, no. 619)
American Mathematical Society, 1997
Available at 21 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"November 1997, volume 130, number 619 (third of 4 numbers)." -- t.p.
Includes bibliographical references
Description and Table of Contents
Description
In this work, two classes of manifolds whose geodesic flows are integrable are defined, and their global structures are investigated. They are called Liouville manifolds and Kahler-Liouville manifolds respectively. In each case, the author finds several invariants with which they are partly classified. The classification indicates, in particular, that these classes contain many new examples of manifolds with integrable geodesic flow.
Table of Contents
Part 1. Liouville Manifolds: Introduction Preliminary remarks and notations Local structure of proper Liouville manifolds Global structure of proper Liouville manifolds Proper Liouville manifolds of rank one Appendix. Simply connected manifolds of constant curvature Part 2. Kahler-Liouville manifolds: Introduction Preliminary remarks and notations Local calculus on $M^1$ Summing up the local data Structure of $M-M^1$ Torus action and the invariant hypersurfaces Properties as a toric variety Bundle structure associated with a subset of $\mathcal A$ The case where $ No. \mathcal A=1$ Existence theorem.
by "Nielsen BookData"