Wavelets, multiwavelets, and their applications : AMS Special Session on Wavelets, Multiwavelets, and Their Applications, January, 1997, San Diego, California
著者
書誌事項
Wavelets, multiwavelets, and their applications : AMS Special Session on Wavelets, Multiwavelets, and Their Applications, January, 1997, San Diego, California
(Contemporary mathematics, v. 216)
American Mathematical Society, c1998
大学図書館所蔵 全69件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This volume contains refereed research articles on the active area of wavelets and multiwavelets. The book draws upon work presented by experts in the field during the special session on 'Wavelets, Multiwavelets and Their Applications' at the Joint Mathematics Meetings in San Diego (January 1997). Wavelets were implicit in mathematics, physics, signal or image processing, and numerical analysis long before they were given the status of a unified scientific field in the late 1980s. They continue to be one of the few subjects that have attracted considerable interest from the mathematical community as well as from other diverse disciplines where they have had promising applications. The topic is in full evolution, with many active research efforts emerging from the fruitful interaction of various mathematical subjects and other scientific disciplines.
目次
Part I: Wavelet theory and applications: Extensions of no-go theorems to many signal systems by R. Balan Wavelet sets in ${\mathbb{R}}^n$. II by X. Dai, D. R. Larson, and D. M. Speegle An analogue of Cohen's condition for nonuniform multiresolution analyses by J.-P. Gabardo and M. Z. Nashed Positive estimation with wavelets by G. G. Walter and X. Shen A class of quasi-orthogonal wavelet bases by R. A. Zalik Part II: Multiwavelet theory and applications: Characterization and parameterization of multiwavelet bases by A. Aldroubi and M. Papadakis Nonhomogeneous refinement equations by T. B. Dinsenbacher and D. P. Hardin Multi-scaling function interpolation and approximation by E. Lin and Z. Xiao A note on construction of biorthogonal multi-scaling functions by V. Strela Orthonormal matrix valued wavelets and matrix Karhunen-Loeve expansion by X.-G. Xia.
「Nielsen BookData」 より