Resolution of singularities of embedded algebraic surfaces
Author(s)
Bibliographic Information
Resolution of singularities of embedded algebraic surfaces
(Springer monographs in mathematics)
Springer, c1998
2nd, enl. ed
Available at 51 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 301-304) and indexes
Description and Table of Contents
Description
The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.
Table of Contents
0 Introduction.- 1. Local Theory.- 1 Terminology and preliminaries.- 2 Resolvers and principalizers.- 3 Dominant character of a normal sequence.- 4 Unramified local extensions.- 5 Main results.- 2. Global Theory.- 6 Terminology and preliminaries.- 7 Global resolvers.- 8 Global principalizers.- 9 Main results.- 3. Some Cases of Three-Dimensional Birational Resolution.- 10 Uniformization of points of small multiplicity.- 11 Three-dimensional birational resolution over a ground field of characteristic zero.- 12 Existence of projective models having only points of small multiplicity.- 13 Three-dimensional birational resolution over an algebraically closed ground field of charateristic ? 2, 3, 5.- Appendix on Analytic Desingularization in Characteristic Zero.- Additional Bibliography.- Index of Notation.- Index of Definitions.- List of Corrections.
by "Nielsen BookData"