The boundary-domain integral method for elliptic systems
Author(s)
Bibliographic Information
The boundary-domain integral method for elliptic systems
(Lecture notes in mathematics, 1683)
Springer, c1998
- : pbk
- Other Title
-
The boundary-domain integral method for elliptic systems : with an application to shells
Available at 85 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [157]-163) and index
Description and Table of Contents
Description
This monograph gives a description of all algorithmic steps and a mathematical foundation for a special numerical method, namely the boundary-domain integral method (BDIM). This method is a generalization of the well-known boundary element method, but it is also applicable to linear elliptic systems with variable coefficients, especially to shell equations. The text should be understandable at the beginning graduate-level. It is addressed to researchers in the fields of numerical analysis and computational mechanics, and will be of interest to everyone looking at serious alternatives to the well-established finite element methods.
Table of Contents
Pseudohomogeneous distributions.- Levi functions for elliptic systems of partial differential equations.- Systems of integral equations, generated by Levi functions.- The differential equations of the DV model.- Levi functions for the shell equations.- The system of integral equations and its numerical solution.- An example: Katenoid shell under torsion.
by "Nielsen BookData"