Applications of point set theory in real analysis
Author(s)
Bibliographic Information
Applications of point set theory in real analysis
(Mathematics and its applications, v. 429)
Kluwer Academic, c1998
Available at 25 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 223-231) and index
Description and Table of Contents
Description
This book is devoted to some results from the classical Point Set Theory and their applications to certain problems in mathematical analysis of the real line. Notice that various topics from this theory are presented in several books and surveys. From among the most important works devoted to Point Set Theory, let us first of all mention the excellent book by Oxtoby [83] in which a deep analogy between measure and category is discussed in detail. Further, an interesting general approach to problems concerning measure and category is developed in the well-known monograph by Morgan [79] where a fundamental concept of a category base is introduced and investigated. We also wish to mention that the monograph by Cichon, W";glorz and the author [19] has recently been published. In that book, certain classes of subsets of the real line are studied and various cardinal valued functions (characteristics) closely connected with those classes are investigated. Obviously, the IT-ideal of all Lebesgue measure zero subsets of the real line and the IT-ideal of all first category subsets of the same line are extensively studied in [19], and several relatively new results concerning this topic are presented. Finally, it is reasonable to notice here that some special sets of points, the so-called singular spaces, are considered in the classi
Table of Contents
Preface. 0. Introduction: Preliminary Facts. 1. Set-Valued Mappings. 2. Nonmeasurable Sets and Sets without the Baire Property. 3. Three Aspects of the Measure Extension Problem. 4. Some Properties of sigma-algebras and sigma-ideals. 5. Nonmeasurable Subgroups of the Real Line. 6. Additive Properties of Invariant sigma-Ideals on the Real Line. 7. Translations of Sets and Functions. 8. The Steinhaus Property of Invariant Measures. 9. Some Applications of the Property (N of Luzin. 10. The Principle of Condensation of Singularities. 11. The Uniqueness of Lebesgue and Borel Measures. 12. Some Subsets of Spaces Equipped with Transformation Groups. 13. Sierpinski's Partition and Its Applications. 14. Selectors Associated with Subgroups of the Real Line. 15. Set Theory and Ordinary Differential Equations. Bibliography. Subject Index.
by "Nielsen BookData"