Theory of linear and integer programming
Author(s)
Bibliographic Information
Theory of linear and integer programming
(Wiley-Interscience series in discrete mathematics and optimization)
Wiley, 1998, c1986
- : pbk
Available at 43 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"First published as paperback by John Wiley, 1998" -- T.p. verso
"A Wiley-Interscience publication"
Bibliography: p. 381-450
Includes index
Description and Table of Contents
Description
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
Table of Contents
Introduction and Preliminaries.
Problems, Algorithms, and Complexity.
LINEAR ALGEBRA.
Linear Algebra and Complexity.
LATTICES AND LINEAR DIOPHANTINE EQUATIONS.
Theory of Lattices and Linear Diophantine Equations.
Algorithms for Linear Diophantine Equations.
Diophantine Approximation and Basis Reduction.
POLYHEDRA, LINEAR INEQUALITIES, AND LINEAR PROGRAMMING.
Fundamental Concepts and Results on Polyhedra, Linear Inequalities, and Linear Programming.
The Structure of Polyhedra.
Polarity, and Blocking and Anti-Blocking Polyhedra.
Sizes and the Theoretical Complexity of Linear Inequalities and Linear Programming.
The Simplex Method.
Primal-Dual, Elimination, and Relaxation Methods.
Khachiyan's Method for Linear Programming.
The Ellipsoid Method for Polyhedra More Generally.
Further Polynomiality Results in Linear Programming.
INTEGER LINEAR PROGRAMMING.
Introduction to Integer Linear Programming.
Estimates in Integer Linear Programming.
The Complexity of Integer Linear Programming.
Totally Unimodular Matrices: Fundamental Properties and Examples.
Recognizing Total Unimodularity.
Further Theory Related to Total Unimodularity.
Integral Polyhedra and Total Dual Integrality.
Cutting Planes.
Further Methods in Integer Linear Programming.
References.
Indexes.
by "Nielsen BookData"