Minimax theory and applications
著者
書誌事項
Minimax theory and applications
(Nonconvex optimization and its applications, v. 26)
Kluwer, c1998
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
Proceedings of the workshop on "Minimax theory and applications", held from September 30 to October 6, 1996 in Erice, Italy
内容説明・目次
内容説明
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y , one tries to find conditions that ensure the validity of the equality sup inf f(x,y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "switch quantifiers" arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject.
目次
- Preface. Nonlinear Two Functions Minimax Theorems
- Cao-Zong Cheng, Bor-Luh Lin. Weakly Upward-Downward Minimax Theorem
- Cao-Zong Cheng, et al. A Two-Function Minimax Theorem
- A. Chinni. Generalized Fixed-Points and Systems of Minimax Inequalities
- P. Deguire. A Minimax Inequality for Marginally Semicontinuous Functions
- G.H. Greco, M.P. Moschen. On Variational Minimax Problems under Relaxed Coercivity Assumptions
- J. Gwinner. A Topological Investigation of the Finite Intersection Property
- C.D. Horvath. Minimax Results and Randomization for Certain Stochastic Games
- A. Irle. Intersection Theorems, Minimax Theorems and Abstract Connectedness
- J. Kindler. K-K-M-S Type Theorems in Infinite Dimensional Spaces
- H. Komiya. Hahn-Banach Theorems for Convex Functions
- M. Lassonde. Two Functions Generalization of Horvath's Minimax Theorem
- Bor-Luh Lin, Feng-Shuo Yu. Some Remarks on a Minimax Formulation of a Variational Inequality
- G. Mastroeni. Network Analysis
- M.M. Neumann, M.V. Velasco. On a Topological Minimax Theorem and its Applications
- B. Ricceri. Three Lectures on Minimax and Monotonicity
- S. Simons. Fan's Existence Theorem for Inequalities Concerning Convex Functions and its Applications
- W. Takahashi. An Algorithm for the Multi-Access Channel Problem
- Peng-Jung Wan, et al. Author Index.
「Nielsen BookData」 より