Semi-infinite programming
著者
書誌事項
Semi-infinite programming
(Nonconvex optimization and its applications, v. 25)
Kluwer Academic, c1998
- : hbk
- : pbk
大学図書館所蔵 全17件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
Size of softcover reprint: 24 cm
内容説明・目次
内容説明
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations have expanded very fast during the last years. Therefore, the main goal of this monograph is to provide a collection of tutorial and survey type articles which represent a substantial part of the contemporary body of knowledge in SIP. We are glad that leading researchers have contributed to this volume and that their articles are covering a wide range of important topics in this subject. It is our hope that both experienced students and scientists will be well advised to consult this volume. We got the idea for this volume when we were organizing the semi-infinite pro gramming workshop which was held in Cottbus, Germany, in September 1996.
目次
- Preface. Part I: Theory. 1. A Comprehensive Survey of Linear Semi-Infinite Optimization Theory
- M.A. Goberna, M.A. Lopez. 2. On Stability and Deformation in Semi-Infinite Optimization
- H.Th. Jongen, J.J. Ruckmann. 3. Regularity and Stability in Nonlinear Semi-Infinite Optimization
- D. Klatte, R. Henrion. 4. First and Second Order Optimality Conditions and Perturbation Analysis of Semi-Infinite Programming Problems
- A. Shapiro. Part II: Numerical Methods. 5. Exact Penalty Function Methods for Nonlinear Semi-Infinite Programming
- I.D. Coope, C.J. Price. 6. Feasible Sequential Quadratic Programming for Finely Discretized Problems from SIP
- C.T. Lawrence, A.L. Tits. 7. Numerical Methods for Semi-Infinite Programming: A Survey
- R. Reemtsen, S. Goerner. 8. Connections Between Semi-Infinite and Semidefinite Programming
- L. Vandenberghe, S. Boyd. Part III: Applications. 9. Reliability Testing and Semi-Infinite Linear Programming
- I. Kuban Altinel, S. OEzekici. 10. Semi-Infinite Programming in Orthogonal Wavelet Filter Design
- K.O. Kortanek, P. Moulin. 11. The Design of Nonrecursive Digital Filters via Convex Optimization
- A.W. Potchinkov. 12. Semi-Infinite Programming in Control
- E.W. Sachs.
「Nielsen BookData」 より