Module theory : endomorphism rings and direct sum decompositions in some classes of modules
著者
書誌事項
Module theory : endomorphism rings and direct sum decompositions in some classes of modules
(Progress in mathematics, v. 167)
Birkhäuser, c1998
- : Boston
- : Basel
大学図書館所蔵 全72件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 271-282) and index
内容説明・目次
内容説明
This expository monograph was written for three reasons. Firstly, we wanted to present the solution to a problem posed by Wolfgang Krull in 1932 [Krull 32]. He asked whether what we now call the "Krull-Schmidt Theorem" holds for ar tinian modules. The problem remained open for 63 years: its solution, a negative answer to Krull's question, was published only in 1995 (see [Facchini, Herbera, Levy and Vamos]). Secondly, we wanted to present the answer to a question posed by Warfield in 1975 [Warfield 75]. He proved that every finitely pre sented module over a serial ring is a direct sum of uniserial modules, and asked if such a decomposition was unique. In other words, Warfield asked whether the "Krull-Schmidt Theorem" holds for serial modules. The solution to this problem, a negative answer again, appeared in [Facchini 96]. Thirdly, the so lution to Warfield's problem shows interesting behavior, a rare phenomenon in the history of Krull-Schmidt type theorems. Essentially, the Krull-Schmidt Theorem holds for some classes of modules and not for others. When it does hold, any two indecomposable decompositions are uniquely determined up to a permutation, and when it does not hold for a class of modules, this is proved via an example. For serial modules the Krull-Schmidt Theorem does not hold, but any two indecomposable decompositions are uniquely determined up to two permutations. We wanted to present such a phenomenon to a wider math ematical audience.
目次
1 Basic Concepts.- 1.1 Semisimple rings and modules.- 1.2 Local and semilocal rings.- 1.3 Serial rings and modules.- 1.4 Pure exact sequences.- 1.5 Finitely definable subgroups and pure-injective modules.- 1.6 The category (RFP, Ab).- 1.7 ?-pure-injective modules.- 1.8 Notes on Chapter 1.- 2 The Krull-Schmidt-Remak-Azumaya Theorem.- 2.1 The exchange property.- 2.2 Indecomposable modules with the exchange property.- 2.3 Isomorphic refinements of finite direct sum decompositions.- 2.4 The Krull-Schmidt-Remak-Azumaya Theorem.- 2.5 Applications.- 2.6 Goldie dimension of a modular lattice.- 2.7 Goldie dimension of a module.- 2.8 Dual Goldie dimension of a module.- 2.9 ?-small modules and ?-closed classes.- 2.10 Direct sums of ?-small modules.- 2.11 The Loewy series.- 2.12 Artinian right modules over commutative or right noetherian rings.- 2.13 Notes on Chapter 2.- 3 Semiperfect Rings.- 3.1 Projective covers and lifting idempotents.- 3.2 Semiperfect rings.- 3.3 Modules over semiperfect rings.- 3.4 Finitely presented and Fitting modules.- 3.5 Finitely presented modules over serial rings.- 3.6 Notes on Chapter 3.- 4 Semilocal Rings.- 4.1 The Camps-Dicks Theorem.- 4.2 Modules with semilocal endomorphism ring.- 4.3 Examples.- 4.4 Notes on Chapter 4.- 5 Serial Rings.- 5.1 Chain rings and right chain rings.- 5.2 Modules over artinian serial rings.- 5.3 Nonsingular and semihereditary serial rings.- 5.4 Noetherian serial rings.- 5.5 Notes on Chapter 5.- 6 Quotient Rings.- 6.1 Quotient rings of arbitrary rings.- 6.2 Nil subrings of right Goldie rings.- 6.3 Reduced rank.- 6.4 Localization in chain rings.- 6.5 Localizable systems in a serial ring.- 6.6 An example.- 6.7 Prime ideals in serial rings.- 6.8 Goldie semiprime ideals.- 6.9 Diagonalization of matrices.- 6.10 Ore sets in serial rings.- 6.11 Goldie semiprime ideals and maximal Ore sets.- 6.12 Classical quotient ring of a serial ring.- 6.13 Notes on Chapter 6.- 7 Krull Dimension and Serial Rings.- 7.1 Deviation of a poset.- 7.2 Krull dimension of arbitrary modules and rings.- 7.3 Nil subrings of rings with right Krull dimension.- 7.4 Transfinite powers of the Jacobson radical.- 7.5 Structure of serial rings of finite Krull dimension.- 7.6 Notes on Chapter 7.- 8 Krull-Schmidt Fails for Finitely Generated Modules and Artinian Modules.- 8.1 Krull-Schmidt fails for finitely generated modules.- 8.2 Krull-Schmidt fails for artinian modules.- 8.3 Notes on Chapter 8.- 9 Biuniform Modules.- 9.1 First properties of biuniform modules.- 9.2 Some technical lemmas.- 9.3 A sufficient condition.- 9.4 Weak Krull-Schmidt Theorem for biuniform modules.- 9.5 Krull-Schmidt holds for finitely presented modules over chain rings.- 9.6 Krull-Schmidt fails for finitely presented modules over serial rings.- 9.7 Further examples of biuniform modules of type 1.- 9.8 Quasi-small uniserial modules.- 9.9 A necessary condition for families of uniserial modules.- 9.10 Notes on Chapter 9.- 10 ?-pure-injective Modules and Artinian Modules.- 10.1 Rings with a faithful ?-pure-injective module.- 10.2 Rings isomorphic to endomorphism rings of artinian modules.- 10.3 Distributive modules.- 10.4 ?-pure-injective modules over chain rings.- 10.5 Homogeneous ?-pure-injective modules.- 10.6 Krull dimension and ?-pure-injective modules.- 10.7 Serial rings that are endomorphism rings of artinian modules.- 10.8 Localizable systems and ?-pure-injective modules over serial rings.- 10.9 Notes on Chapter 10.- 11 Open Problems.
「Nielsen BookData」 より