Computational thermochemistry : prediction and estimation of molecular thermodynamics
著者
書誌事項
Computational thermochemistry : prediction and estimation of molecular thermodynamics
(ACS symposium series, 677)
American Chemical Society, c1998
大学図書館所蔵 件 / 全14件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Developed from a symposium sponsored by the Division of Computers in Chemistry at the 212th National Meeting of the American Chemical Society, Orlando, Florida, August 25-29, 1996."
Includes bibliographical references and index
内容説明・目次
内容説明
Aiming to combine accessible introductory material with state-of-the-art advances, this volume includes chapters on reaction rates for gas-phase reactions, solvation models and phase-change enthalpies. The techniques span empirical estimation through the highest-level ab initio methods, and the appendices provide valuable information on current databases and software, along with a glossary and numerous worked examples.
目次
- Introduction: Karl K. Irikura and David J. Frurip, computational thermochemistry. Part 1 Empirical methods - group contributions: S.W. Benson and Norman Cohen, current status of group additivity
- Eugene S. Domalski, estimation of enthalpies of formation of organic compounds at infinite dilution in water at 298.15 K - a pathway for estimation of enthalpies of solution
- James S. Chickos, William E. Acree, Jr. and Joel F. Liebman, estimating phase-change enthalpies and entropies. Part 2 Empirical methods - other approaches: Hussein Y. Afeefy and Joel F. Liebman, estimation of the enthalpies of formation of organic compounds in the solid phase - the study of 2-acetoxybenzoic acid (aspirin) and its isomers
- R.S. Drago and T.R. Cundari, electrostatic-covalent model parameters for molecular modelling
- Donald W. Rogers, molecular mechanics in computational thermochemistry. Part 3 Methods based on molecular-orbital or density-functional theory: Walter Thiel, thermochemistry from semiempirical molecular orbital theory
- Michael R. Zachariah and Carl F. Melius, bond-additivity correction of ab initio computations for accurate prediction of thermochemistry
- Larry A. Curtiss and Krishnan Raghavachari, computational methods for calculating accurate enthalpies of formation, ionization potentials, and electron affinities
- Margareta R.A. Blomberg and Per E.M. Siegbahn, calculating bond strengths for transition-metal complexes
- Jan M.L. Martin, calibration study of atomization energies of small polyatomics
- George A. Petersson, complete basis-set thermochemistry and kinetics
- Joseph L. Durant, computational thermochemistry and transition states
- David J. Giesen, Candee C. Chambers, Gregory D. Hawkins, Christopher J. Cramer and Donald G. Truhlar, modelling free energies of solvation and transfer. Part 4 Applications: J.T. Golab and M.R. Greenlied, practical chemistry modelling applied to process design studies
- David J. Frurip, Nelson G. Rondan and Joey W. Storer, implementation and application of computational thermochemistry to industrial process design at the Dow Chemical Company
- R.J. Berry, M. Schwartz and Paul Marshall, ab initio calculations for kinetic modelling of halocarbons
- Peter Politzer and Jorge M. Seminario, use of density functional methods to compute heats of reactions
- Tom Ziegler, periodic trends in bond energies - a density functional study. Appendices: David J. Frurip and Joey W. Storer, software and databases for thermochemistry
- Karl K. Irikura, essential statistical thermodynamics
- Karl K. Irikura and David J. Frurip, worked examples
- Karl K. Irikura, glossary of common terms and abbreviations in quantum chemistry.
「Nielsen BookData」 より