Generalized quasilinearization for nonlinear problems
著者
書誌事項
Generalized quasilinearization for nonlinear problems
(Mathematics and its applications, v. 440)
Kluwer Academic Publishers, c1998
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The problems of modern society are complex, interdisciplinary and nonlin- ear. ~onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well- trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob- taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera- tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see [27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t,u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t,u) s f(t,u) s h(t,u), for all (t,u).
目次
Preface. 1: First Order Differential Equations. 1.0. Introduction. 1.1. Method of Upper and Lower Solutions. 1.2. Method of Quasilinearization. 1.3. Extensions. 1.4. Generalizations. 1.5. Refinements. 1.6. Notes. 2: First Order Differential Equations. (Cont.) 2.0. Introduction. 2.1. Periodic Boundary Value Problems. 2.2. Anti-Periodic Boundary Value Problems. 2.3. Interval Analysis and Quasilinearization. 2.4. Higher Order Convergence. 2.5. Another Refinement of Quasilinearization. 2.6. Extension to System of Differential Equations. 2.7. Notes. 3: Second Order Differential Equations. 3.0. Introduction. 3.1. Method of Upper and Lower Solutions. 3.2. Extension of Quasilinearization. 3.3. Generalized Quasilinearization. 3.4. General Second Order BVP. 3.5. General Second Order BVP (cont.). 3.6. Higher Order Convergence. 3.7. Notes. 4: Miscellaneous Extensions. 4.0. Introduction. 4.1. Dynamic Systems on Time Scales. 4.2. Integro-Differential Equations. 4.3. Functional Differential Equations. 4.4. Impulsive Differential Equations. 4.5. Stochastic Differential Equations. 4.6. Differential Equations in a Banach Space. 4.7. Notes. References. Index.
「Nielsen BookData」 より