Higher initial ideals of homogeneous ideals
Author(s)
Bibliographic Information
Higher initial ideals of homogeneous ideals
(Memoirs of the American Mathematical Society, no. 638)
American Mathematical Society, 1998
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"July 1998, volume 134, number 638 (fourth of 6 numbers)"
Includes bibliographical references
Description and Table of Contents
Description
Given a homogeneous ideal $I$ and a monomial order, one may form the initial ideal $\textnormal{in}(I)$. The initial ideal gives information about $I$, for instance $I$ and $\textnormal{in}(I)$ have the same Hilbert function. However, if $\mathcal I$ is the sheafification of $I$ one cannot read the higher cohomological dimensions $h^i({\mathbf P}^n, \mathcal I(\nu)$ from $\textnormal{in}(I)$. This work remedies this by defining a series of higher initial ideals $\textnormal{in}_s(I)$ for $s\geq0$. Each cohomological dimension $h^i({\mathbf P}^n, \mathcal I(\nu))$ may be read from the $\textnormal{in}_s(I)$. The $\textnormal{in}_s(I)$ are however more refined invariants and contain considerably more information about the ideal $I$. This work considers in particular the case where $I$ is the homogeneous ideal of a curve in ${\mathbf P}^3$ and the monomial order is reverse lexicographic.Then the ordinary initial ideal $\textnormal{in}_0(I)$ and the higher initial ideal $\textnormal{in}_1(I)$ have very simple representations in the form of plane diagrams. It enables one to visualize cohomology of projective schemes in ${\mathbf P}^n$. It provides an algebraic approach to studying projective schemes. It gives structures which are generalizations of initial ideals.
Table of Contents
Introduction Borel-fixed ideals Monomial orders Some algebraic lemmas Defining the higher initial ideals Representing the higher initial ideals Group action on $R^{s+1}(I)$ Describing the action on $R^{s+1}(I)$ Borel-fixedness Higher initial ideals of hyperplane sections Representing the higher initial ideals of general hyperplane sections Higher initial ideals as combinatorial structures Reading cohomological information Examples: Points and curves in $\mathbf P^3$ References.
by "Nielsen BookData"