Explosive instabilities in mechanics
著者
書誌事項
Explosive instabilities in mechanics
Springer, c1998
大学図書館所蔵 件 / 全7件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book deals with explosive instabilities in mechanics, deriving a solution to a system of PDEs that arise in practical situations. It begins with a relatively simple account of blow-up in systems of interaction-diffusion equations. Among the topics presented are: classical fluid equations, catastrophic behavior in nonlinear fluid theories, blow-up in Volterra equations, and rapid energy growth in parallel flows.
目次
1. Introduction.- 1.1 Blow-Up in Partial Differential Equations in Applied Mathematics.- 1.2 Methods of Establishing Non-existence and Growth Solutions.- 1.2.1 The Concavity Method.- 1.2.2 The Eigenfunction Method.- 1.2.3 Explicit Inequality Methods.- 1.2.4 The Multi-Eigenfunction Method.- 1.2.5 Logarithmic Convexity.- 1.3 Finite Time Blow-Up Systems with Convection.- 1.3.1 Fujita-Type Problems.- 1.3.2 Equations with Gradient Terms.- 1.3.3 Systems with Gradient Terms.- 1.3.4 Equations with Gradient Terms and Non-Dirichlet Boundary Conditions.- 1.3.5 Blow-Up of Derivatives.- 2. Analysis of a First-Order System.- 2.1 Conditional Decay of Solutions.- 2.2 Boundedness of Solutions.- 2.3 Unconditional Decay of Solutions.- 2.3.1 Special Cases.- 2.4 Global Non-existence of Solutions.- 2.5 Numerical Results by Finite Elements.- 2.5.1 Solution Structure with Linear and Quadratic Right-Hand Sides.- 3. Singularities for Classical Fluid Equations.- 3.1 Breakdown for First-Order Systems.- 3.2 Blow-Up of Solutions to the Euler Equations.- 3.2.1 Vortex Sheet Breakdown and Rayleigh-Taylor Instability.- 3.2.2 A Mathematical Theory for Sonoluminescence.- 3.3 Blow-Up of Solutions to the Navier-Stokes Equations.- 3.3.1 Self-similar Solutions.- 3.3.2 Benard-Marangoni Convection.- 4. Catastrophic Behaviour in Other Non-linear Fluid Theories.- 4.1 Non-existence on Unbounded Domains.- 4.1.1 Ladyzhenskaya's Models.- 4.1.2 Global Non-existence Backward in Time for Model I, When the Spatial Domain Is R2.- 4.1.3 Global Non-existence Backward in Time for Model I, When the Spatial Domain Is R3.- 4.1.4 Exponential Growth for Model II, Backward in Time.- 4.1.5 The Backward in Time Problem for Model III.- 4.2 A Model for a Second Grade Fluid in Glacier Physics.- 4.2.1 Non-existence Forward in Time for Model I.- 4.2.2 Non-existence Backward in Time for Model I.- 4.2.3 Exponential Growth Forward in Time for Model II.- 4.2.4 Exponential Boundedness Backward in Time for Model II.- 4.3 Blow-Up for Generalised KdeV Equations.- 4.4 Very Rapid Growth in Ferrohydrodynamics.- 4.5 Temperature Blow-Up in an Ice Sheet.- 5. Blow-Up in Volterra Equations.- 5.1 Blow-Up for a Solution to a Volterra Equation.- 5.1.1 A General Non-linear Volterra Equation.- 5.1.2 Volterra Equations Motivated by Partial Differential Equations on a Bounded Spatial Domain.- 5.2 Blow-Up for a Solution to a System of Volterra Equations.- 5.2.1 Coupled Non-linear Volterra Equations Which May Arise from Non-linear Parabolic Systems.- 6. Chemotaxis.- 6.1 Mathematical Theories of Chemotaxis.- 6.1.1 A Simplified Model.- 6.2 Blow-Up in Chemotaxis When There Are Two Diffusion Terms.- 6.3 Blow-Up in Chemotaxis with a Single Diffusion Term.- 7. Change of Type.- 7.1 Instability in a Hypoplastic Material.- 7.2 Instability in a Viscous Plastic Model for Sea Ice Dynamics.- 7.3 Pressure Dependent Viscosity Flow.- 8. Rapid Energy Growth in Parallel Flows.- 8.1 Rapid Growth in Incompressible Viscous Flows.- 8.1.1 Parallel Flows.- 8.1.2 Energy Growth in Circular Pipe Flow.- 8.1.3 Linear Instability of Elliptic Pipe Flow.- 8.2 Transient Growth in Compressible Flows.- 8.3 Shear Flow in Granular Materials.- 8.4 Energy Growth in Parallel Flows of Superimposed Viscous Fluids.
「Nielsen BookData」 より