Introduction to the theory of error-correcting codes
著者
書誌事項
Introduction to the theory of error-correcting codes
(Wiley-Interscience series in discrete mathematics and optimization)
Wiley, 1998
3rd ed
大学図書館所蔵 全33件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"A Wiley-Interscience publication."
Includes bibliographical references p. 199-202
Includes index
内容説明・目次
内容説明
A complete introduction to the many mathematical tools used to solve practical problems in coding.
Mathematicians have been fascinated with the theory of error-correcting codes since the publication of Shannon's classic papers fifty years ago. With the proliferation of communications systems, computers, and digital audio devices that employ error-correcting codes, the theory has taken on practical importance in the solution of coding problems. This solution process requires the use of a wide variety of mathematical tools and an understanding of how to find mathematical techniques to solve applied problems.
Introduction to the Theory of Error-Correcting Codes, Third Edition demonstrates this process and prepares students to cope with coding problems. Like its predecessor, which was awarded a three-star rating by the Mathematical Association of America, this updated and expanded edition gives readers a firm grasp of the timeless fundamentals of coding as well as the latest theoretical advances. This new edition features:
* A greater emphasis on nonlinear binary codes
* An exciting new discussion on the relationship between codes and combinatorial games
* Updated and expanded sections on the Vashamov-Gilbert bound, van Lint-Wilson bound, BCH codes, and Reed-Muller codes
* Expanded and updated problem sets.
Introduction to the Theory of Error-Correcting Codes, Third Edition is the ideal textbook for senior-undergraduate and first-year graduate courses on error-correcting codes in mathematics, computer science, and electrical engineering.
目次
Introductory Concepts.
Useful Background.
A Double-Error-Correcting BCH Code and a Finite Field of 16 Elements.
Finite Fields.
Cyclic Codes.
Group of a Code and Quadratic Residue (QR) Codes.
Bose-Chaudhuri-Hocquenghem (BCH) Codes.
Weight Distributions.
Designs and Games.
Some Codes Are Unique.
Appendix.
References.
Index.
「Nielsen BookData」 より