Basic topological structures of ordinary differential equations
著者
書誌事項
Basic topological structures of ordinary differential equations
(Mathematics and its applications, v. 432)
Kluwer Academic Publishers, c1998
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [507]-509) and index
内容説明・目次
内容説明
The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist.
目次
Preface. 1. Topological and Metric Spaces. 2. Some Properties of Topological, Metric and Euclidean Spaces. 3. Spaces of Mappings and Spaces of Compact Subsets. 4. Derivation and Integration. 5. Weak Topology on the Space L1 and Derivation of Convergent Sequences. 6. Basic Properties of Solution Spaces. 7. Convergent Sequences of Solution Spaces. 8. Peano, Caratheodory and Davy Conditions. 9. Comparison Theorem. 10. Changes of Variables, Morphisms and Maximal Extensions. 11. Some Methods of Investigation of Equations. 12. Equations and Inclusions with Complicated Discontinuities in the Space Variables. 13. Equations and Inclusions of Second Order. Cauchy Problem Theory. 14. Equations and Inclusions of Second Order. Periodic Solutions, Dirichlet Problem. 15. Behavior of Solutions. 16. Two-Dimensional Systems. References. Index. Notation.
「Nielsen BookData」 より