Numerical linear algebra for applications in statistics
著者
書誌事項
Numerical linear algebra for applications in statistics
(Statistics and computing)
Springer, c1998
- : hardcover
- : softcover
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
Accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Regardless of the software system used, the book describes and gives examples of the use of modern computer software for numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, factorisations, matrix and vector norms, and other topics in linear algebra. The book is essentially self- contained, with the topics addressed constituting the essential material for an introductory course in statistical computing. Numerous exercises allow the text to be used for a first course in statistical computing or as supplementary text for various courses that emphasise computations.
目次
- 1 Computer Storage and Manipulation of Data.- 1.1 Digital Representation of Numeric Data.- 1.2 Computer Operations on Numeric Data.- 1.3 Numerical Algorithms and Analysis.- Exercises.- 2 Basic Vector/Matrix Computations.- 2.1 Notation, Definitions, and Basic Properties.- 2.1.1 Operations on Vectors
- Vector Spaces.- 2.1.2 Vectors and Matrices.- 2.1.3 Operations on Vectors and Matrices.- 2.1.4 Partitioned Matrices.- 2.1.5 Matrix Rank.- 2.1.6 Identity Matrices.- 2.1.7 Inverses.- 2.1.8 Linear Systems.- 2.1.9 Generalized Inverses.- 2.1.10 Other Special Vectors and Matrices.- 2.1.11 Eigenanalysis.- 2.1.12 Similarity Transformations.- 2.1.13 Norms.- 2.1.14 Matrix Norms.- 2.1.15 Orthogonal Transformations.- 2.1.16 Orthogonalization Transformations.- 2.1.17 Condition of Matrices.- 2.1.18 Matrix Derivatives.- 2.2 Computer Representations and Basic Operations.- 2.2.1 Computer Representation of Vectors and Matrices.- 2.2.2 Multiplication of Vectors and Matrices.- Exercises.- 3 Solution of Linear Systems.- 3.1 Gaussian Elimination.- 3.2 Matrix Factorizations.- 3.2.1 LU and LDU Factorizations.- 3.2.2 Cholesky Factorization.- 3.2.3 QR Factorization.- 3.2.4 Householder Transformations (Reflections).- 3.2.5 Givens Transformations (Rotations).- 3.2.6 Gram-Schmidt Transformations.- 3.2.7 Singular Value Factorization.- 3.2.8 Choice of Direct Methods.- 3.3 Iterative Methods.- 3.3.1 The Gauss-Seidel Method with Successive Overrelaxation.- 3.3.2 Solution of Linear Systems as an Optimization Problem
- Conjugate Gradient Methods.- 3.4 Numerical Accuracy.- 3.5 Iterative Refinement.- 3.6 Updating a Solution.- 3.7 Overdetermined Systems
- Least Squares.- 3.7.1 Full Rank Coefficient Matrix.- 3.7.2 Coefficient Matrix Not of Full Rank.- 3.7.3 Updating a Solution to an Overdetermined System.- 3.8 Other Computations for Linear Systems.- 3.8.1 Rank Determination.- 3.8.2 Computing the Determinant.- 3.8.3 Computing the Condition Number.- Exercises.- 4 Computation of Eigenvectors and Eigenvalues and the Singular Value Decomposition.- 4.1 Power Method.- 4.2 Jacobi Method.- 4.3 QR Method for Eigenanalysis.- 4.4 Singular Value Decomposition.- Exercises.- 5 Software for Numerical Linear Algebra.- 5.1 Fortran and C.- 5.1.1 BLAS.- 5.1.2 Fortran and C Libraries.- 5.1.3 Fortran 90 and 95.- 5.2 Interactive Systems for Array Manipulation.- 5.2.1 Matlab.- 5.2.2 S, S-Plus.- 5.3 High-Performance Software.- 5.4 Test Data.- Exercises.- 6 Applications in Statistics.- 6.1 Fitting Linear Models with Data.- 6.2 Linear Models and Least Squares.- 6.2.1 The Normal Equations and the Sweep Operator.- 6.2.2 Linear Least Squares Subject to Linear Equality Constraints.- 6.2.3 Weighted Least Squares.- 6.2.4 Updating Linear Regression Statistics.- 6.2.5 Tests of Hypotheses.- 6.2.6 D-Optimal Designs.- 6.3 Ill-Conditioning in Statistical Applications.- 6.4 Testing the Rank of a Matrix.- 6.5 Stochastic Processes.- Exercises.- Appendices.- A Notation and Definitions.- B Solutions and Hints for Selected Exercises.- Literature in Computational Statistics.- World Wide Web, News Groups, List Servers, and Bulletin Boards.- References.- Author Index.
「Nielsen BookData」 より