Burgers-KPZ turbulence : Göttingen lectures
Author(s)
Bibliographic Information
Burgers-KPZ turbulence : Göttingen lectures
(Lecture notes in mathematics, 1700)
Springer Verlag, c1998
Available at 82 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [299]-316) and index
Description and Table of Contents
Description
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Table of Contents
Shock waves and the large scale structure (LSS) of the universe.- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos.- Hopf-Cole formula and its asymptotic analysis.- Statistical description, parabolic approximation.- Hyperbolic approximation and inviscid limit.- Forced Burgers turbulence.- Passive tracer transport in Burgers' and related flows.- Fractal Burgers-KPZ models.
by "Nielsen BookData"