Sphere packings, lattices and groups
著者
書誌事項
Sphere packings, lattices and groups
(Die Grundlehren der mathematischen Wissenschaften, 290)
Springer, c1999
3rd ed
大学図書館所蔵 全97件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [574]-641) and index
Supplementary bibliography (1988-1998): p. [642]-679
内容説明・目次
内容説明
The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.
目次
1 Sphere Packings and Kissing Numbers.- 2 Coverings, Lattices and Quantizers.- 3 Codes, Designs and Groups.- 4 Certain Important Lattices and Their Properties.- 5 Sphere Packing and Error-Correcting Codes.- 6 Laminated Lattices.- 7 Further Connections Between Codes and Lattices.- 8 Algebraic Constructions for Lattices.- 9 Bounds for Codes and Sphere Packings.- 10 Three Lectures on Exceptional Groups.- 11 The Golay Codes and the Mathieu Groups.- 12 A Characterization of the Leech Lattice.- 13 Bounds on Kissing Numbers.- 14 Uniqueness of Certain Spherical Codes.- 15 On the Classification of Integral Quadratic Forms.- 16 Enumeration of Unimodular Lattices.- 17 The 24-Dimensional Odd Unimodular Lattices.- 18 Even Unimodular 24-Dimensional Lattices.- 19 Enumeration of Extremal Self-Dual Lattices.- 20 Finding the Closest Lattice Point.- 21 Voronoi Cells of Lattices and Quantization Errors.- 22 A Bound for the Covering Radius of the Leech Lattice.- 23 The Covering Radius of the Leech Lattice.- 24 Twenty-Three Constructions for the Leech Lattice.- 25 The Cellular Structure of the Leech Lattice.- 26 Lorentzian Forms for the Leech Lattice.- 27 The Automorphism Group of the 26-Dimensional Even Unimodular Lorentzian Lattice.- 28 Leech Roots and Vinberg Groups.- 29 The Monster Group and its 196884-Dimensional Space.- 30 A Monster Lie Algebra?.- Supplementary Bibliography.
「Nielsen BookData」 より