Novel therapeutics from modern biotechnology : from laboratory to human testing
著者
書誌事項
Novel therapeutics from modern biotechnology : from laboratory to human testing
(Handbook of experimental pharmacology, v. 137)
Springer, c1999
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
While addressing the particular problems associated with several classes of biotechnology products, this book also demonstrates that the principles are the same as in the development of small new chemical entities. It begins by studying FDA regulatory expectations for biotech products, before moving on to discuss general issues common to each class of biotech drug, such as proteins, peptides, and nucleic acids. The text deals with specific biotech drugs that have successfully made it into clinical trials, and each review is written by a renowned expert in the relevant fields.
目次
1 Overview of Regulatory Expectations for Introducing Novel Therapies into Clinical Trials.- A. Introduction.- B. Roles of Regulatory Scientists.- C. Product Development and Availability.- D. Data Requirements.- E. Manufacturing.- F. Preclinical Safety Testing.- G. Case-By-Case Approach.- H. Testing Goals.- I. Study Design.- J. Defining Exposure.- K. Product-Specific Concerns.- L. Accessibility of Preclinical Safety Data.- M. Clinical Studies.- I. Early Development.- II. Late Development.- N. Summary.- References.- 2 Preparation of Clinical Trial Supplies of Biopharmaceuticals.- A. Introduction.- I. Research Support Systems.- B. Preclinical Studies.- C. Clinical Supplies.- I. Fermentation.- II. Harvest.- III. Purification.- D. Purification of rDNA-Derived Anti-RSV MAb.- E. Product Quality Issues.- I. Protein Purity.- II. Protein Integrity.- III. Microbial and Viral Safety.- IV. Other Contaminants.- F. Process Design and Validation.- I. Validation of Endotoxin Removal.- II. Process Validation of Model Virus Clearance.- G. Process Economics and the Future of Chromatography.- I. Process Automation and Control.- II. Generic Purification Methods.- H. Conclusions.- References.- 3 Proteins as Drugs: Analysis, Formulation and Delivery.- A. Introduction.- B. The Analysis of Protein Pharmaceuticals.- I. X-Ray Crystallography.- II. Nuclear Magnetic Resonance.- III. Mass Spectroscopy.- IV. Multiple Parametric Approaches.- V. Miscellaneous Comments.- C. Formulation.- D. Delivery.- I. Controlled-Release Dosage Forms.- II. A Practical Delivery Challenge: Insulin.- References.- 4 Strategies for Dealing With the Immunogenicity of Therapeutic Proteins.- A. Introduction.- B. Case Histories of Protein Therapeutic Development.- I. Insulin.- II. Growth Hormone.- III. Asparaginase.- IV. Glucocerebrosidase.- V. OKT3.- C. Strategies Under Development for Increasing the Therapeutic Value of Proteins and Peptides.- I. Encapsulation.- II. Non-Parenteral Routes of Administration.- III. Targeting.- IV. Conjugation.- V. Protein Engineering.- D. Choosing the Proper Strategy for a Protein Therapeutic.- E. The Future of Protein Therapeutics.- References.- 5 Targeted Toxin Hybrid Proteins.- A. Introduction.- I. Protein Toxins That Inhibit Protein Synthesis.- 1. Plant Toxins.- 2. Bacterial Toxins.- II. Structure and Function of Pseudomonas Exotoxin.- 1. Definition of Domains and Mechanism of Intoxication.- 2. Mutants Lacking Cell Binding.- III. Types of Toxins Made with PE.- 1. Chemical Conjugates vs Recombinant Fusions.- 2. Fusion Toxins Containing Transforming Growth Factor-?.- 3. Fusion Toxins Containing Interleukin 2.- 4. Recombinant Immunotoxins.- B. Preclinical Development of Anti-Tac(Fv) Toxins.- I. Background.- II. Efficacy Data on Relevant Human Cells.- 1. Human Activated T-Lymphocytes.- 2. Fresh Adult T-Cell Leukemia Cells.- 3. Fresh Chronic Lymphocytic Leukemia Cells.- III. Efficacy Data in an Animal Model of IL2R-Bearing Cancer.- 1. Production of the Human ATAC-4 Line.- 2. Toxicity of Anti-Tac(Fv) Toxins in Mice.- 3. Pharmacokinetics in Mice.- 4. Antitumor Activity in Tumor-Bearing Mice.- IV. Primate Testing.- 1. Pharmacokinetics in Cynomolgus Monkeys.- 2. Toxicity in Cynomolgus Monkeys.- V. Production Issues.- C. Preclinical Development of Inerleukin 6-PE4E.- I. Background.- II. Study of IL6-PE4E For Ex Vivo Marrow Purging in Multiple Myeloma.- 1. Rationale.- 2. Efficacy Against Fresh Marrow Cells from Myeloma Patients.- 3. Safety Toward Fresh Normal Marrow Cells.- 4. Safety of IL6-PE4EToward Normal Hematopoietic Progenitors.- 5. Lack of Prevention of Bone Marrow Engraftment.- 6. Carryover of IL6-PE4E In Vivo.- III. Production of IL6-PE4E.- D. Summary.- References.- 6 SB 209763: A Humanized Monoclonal Antibody for the Prophylaxis and Treatment of Respiratory Syncytial Virus Infection.- A. Introduction.- B. Early Challenges in the Development of SB 209763.- I. Selection of Target Antigen.- II. Molecular Engineering of SB 209763.- III. Production.- IV. Primary Structure Analysis.- C. Preclinical Evaluation Prior to Testing in Humans.- I. Fusion Inhibition: An In Vitro Correlate of Protection.- II. Antigenic Variation.- III. Animal Models of Respiratory Syncytial Virus Infection.- IV. Safety and Pharmacokinetics.- D. Challenges for the Early Clinical Development of SB 209763.- I. Selection of the Initial Study Population and Safety Considerations.- II. Pharmacodynamic Markers to Establish Pharmacologic Effect.- III. Formulation Considerations for Clinical Studies.- IV. Surveillance for Anti-SB 209763 Antibodies.- V. Transition to the Target Pediatric Population and Choice of Dose.- VI. Results of Early Clinical Studies.- E. Conclusion.- References.- 7 Preclinical Development of Antisense Therapeutics.- A. Introduction.- B. Pharmacology of Antisense Oligodeoxynucleotides.- I. Molecular Pharmacology of Antisense Oligodeoxynucleotides.- II. In Vivo Pharmacology of Antisense Oligodeoxynucleotides.- C. Pharmacokinetics and Toxicity of Oligodeoxynucleotide Therapeutics.- I. Pharmacokinetics and Metabolism.- II. Toxicity of Phosphorothioate Oligodeoxynucleotides.- D. Chemistry, Manufacture and Control of Phosphorothioate Oligodeoxynucleotide Drugs.- I. Synthesis of Phosphorothioate Oligodeoxynucleotides.- 1. Chemistry of Elongation.- 2. Chemistry of Sulfurization.- 3. O,O-Linked Phosphorothioate DNA Diastereoisomerism.- II. Purification of Phosphorothioate Oligodeoxynucleotides.- III. Quality Control of Phosphorothioate Oligodeoxynucleotides.- E. Formulation and Drug Delivery of Oligodeoxynucleotides.- I. Physical-Chemical Properties.- II. Formulation.- III. Drug Delivery: Targeting, Uptake and Release.- F. Summary.- References.- 8 Formulation and Delivery of Nucleic Acids.- A. Introduction.- B. Formulation of DNA.- I. Naked-DNA Injections.- II. Gene Guns.- III. Polymer-Based Formulations.- IV. Lipid-Based Formulations.- 1. Liposome Encapsulation.- 2. Cationic Lipid/Nucleotide Complex.- 3. DNA-Binding Moiety.- 4. Hydrophobic Moiety.- 5. Spacer.- 6. Linker.- 7. Helper Lipid.- C. Delivery to Target Cells.- D. Cell Entry.- I. Receptor-Mediated Uptake.- E. Endosomal Release.- F. Nuclear Localization.- G. Gene Expression.- References.- 9 Safe, Efficient Production of Retroviral Vectors.- A. Introduction.- B. Vectors.- I. Retroviral Vectors.- C. Production of Retroviral Vectors.- I. Production Methods.- 1. Batch Systems.- 2. Roller Bottles.- 3. Multilayered Propagator.- II. Bioreactors.- 1. CellCube Bioreactor.- 2. Hollow-Fiber Bioreactor.- 3. Microcarrier Beads in Bioreactor.- 4. Packed-Bed Air-Lift Bioreactor.- 5. Serum-Containing Production.- D. Downstream Processing.- E. GMP Production of Retroviral Vectors.- I. Cell Banking.- II. Serum-Free Upstream Processing.- III. Serum-Free Downstream Processing.- F. In-Process Assays.- G. Quality Control.- H. Safety.- I. Summary and Conclusions.- References.- 10 Clinical Systems for the Production of Cells and Tissues for Human Therapy.- A. Introduction.- B. Cell Therapy and Tissue Engineering.- I. Ex Vivo Gene Therapy.- II. Stem-Cell Therapy.- C. Critical Requirements for Ex Vivo Cell Production.- I. Process Reliability and Control: Automation.- II. Process Sterility: Closed Systems.- III. Cell Recovery.- IV. Optimization of Key Culture Parameters by Design.- V. Good Manufacturing Practices.- D. Cell-Culture Devices and Procedures.- I. Traditional Cell-Culture Processes: Research Laboratory Environment.- 1. Culture Flasks and Roller Bottles.- 2. Flexible Tissue Culture Containers.- 3. Bioreactors.- II. AASTROM Cell-Production System.- 1. System Description.- a. Disposable Cell Cassette.- b. Incubator.- c. Processor.- d. System Manager.- e. ID Key.- E. Applications for On-Site Delivery of Therapeutic Cell Production.- I. Bone-Marrow Cell Production.- II. Other Cell and Tissue Production.- F. Summary.- References.
「Nielsen BookData」 より