Gender and sexual dimorphism in flowering plants

書誌事項

Gender and sexual dimorphism in flowering plants

Monica A. Geber, Todd E. Dawson, Lynda F. Delph (eds.)

Springer, c1999

大学図書館所蔵 件 / 13

この図書・雑誌をさがす

注記

Includes bibliographical references and indexes

内容説明・目次

内容説明

Written by the leading experts in the field, this book examines the evolutionary advantages of gender dimorphism and sexual dimorphism in flowering plants. Divided into three sections: the first introduces readers to the tremendous variety of breeding systems and their evolution in plants and sets the stage for a consideration of the evolution of dimorphism in reproductive and non-reproductive characters. The second section deals with the evolution of secondary sexual characters, including the theory related to the evolution of sexual dimorphism and its empirical patterns, while the last section deals with the genetics of gender expression and of secondary sexual characters.

目次

  • 1 Gender and Sexual Dimorphism in Flowering Plants: A Review of Terminology, Biogeographic patterns, Ecological Correlates, and Phylogenetic Approaches.- 1.1 Introduction.- 1.2 Terminology.- 1.3 Incidence of Dioecy.- 1.3.1 Overview.- 1.3.2 Ecological Associations.- 1.3.3 Geographic Patterns.- 1.4 Importance of Phylogenetic Approaches.- 1.5 Using Phylogenies to Understand Process and Pattern.- 1.5.1 Phylogenetic Distributions.- 1.5.2 Self-Incompatibility and Dioecy.- 1.5.3 Dioecy and Fleshy Fruits.- 1.5.4 Habitat Shifts, Pollination Biology, and Changes in Outcrossing Rates.- 1.6 Conclusions.- References.- 2 Theories of the Evolution of Dioecy.- 2.1 Introduction.- 2.2 Importance of Theoretical Models.- 2.3 Pathways to Dioecy.- 2.4 Theoretical Relationships Between Allocation of Reproductive Resources and Invasion of Populations by New Sex Morphs.- 2.4.1 Fitness in Outcrossing and Partially Selfing Cosexes and Allocation in Cosexes.- 2.4.2 Invasion of Populations by Females and Males.- 2.4.3 Effect of Cosex Allocations on Invasion by Unisexuals or Partially Sterile Types.- 2.4.4 Effects of Unisexuals on Cosex Allocations.- 2.4.5 Other Possible Routes to Dioecy.- 2.5 Testing the Theory.- 2.5.1 Comparative Tests.- 2.5.2 Gain Curves.- 2.5.3 Intraspecific Data.- 2.5.4 Genetic Data.- 2.6 Conclusions.- 2.7 References.- 3 Empirical Studies: Evolution and Maintenance of Dimorphic Breeding Systems.- 3.1 Introduction.- 3.2 Evolutionary Pathways to Gender Dimorphism.- 3.2.1 Approaches to the Study of Gender.- 3.2.1.1 Quantitative Description of Plant Gender.- 3.2.1.2 Theoretical Modelling.- 3.2.1.3 Phylogenetic Analysis.- 3.2.2 Overview of Pathways.- 3.2.3 From Cosexuality Via Gynodioecy to Dioecy.- 3.2.4 From Monoecy Via Paradioecy to Dioecy.- 3.2.5 From Cosexuality Via Androdioecy to Dioecy.- 3.2.6 From Heterostyly to Dioecy.- 3.2.7 From Duodichogamy or Heterodichogamy to Dioecy.- 3.2.8 The Evolution of Trioecy.- 3.3 Maintenance of Gender Dimorphism in Natural Populations.- 3.3.1 Sex Ratios.- 3.3.2 Evidence for an Outcrossing Advantage: Rates of Selfing and Levels of Inbreeding Depression.- 3.3.3 Relative Seed Fecundity of the Two Sexes.- 3.3.4 Relative Pollen Fecundity of the Two Sexes.- 3.3.5 Case Studies: Tests of Theoretical Models.- 3.3.5.1 Female Frequency and Habitat in Plantago lanceolata.- 3.3.5.2 Plant Vigour, Fruit Production and the Sex Ratio in Hebe strictissima.- 3.3.5.3 Rates of Selfing, Inbreeding Depression and the Sex Ratio.- 3.3.5.4 The Breakdown of Outcrossing Mechanism in Aralia.- 3.4 Directions for Future Research.- 3.4.1 Testable Predictions from Ecological Correlations.- 3.4.2 Other Research Gaps.- 3.5 Conclusions.- References.- 4 Theories of the Evolution of Sexual Dimorphism.- 4.1 Introduction.- 4.2 Models of Sexual Dimorphism.- 4.2.1 Types of Models.- 4.2.2 General Features.- 4.2.3 Sexual Dimorphism in a Dioecious Organism.- 4.2.3.1 Genetic Models.- 4.2.3.2 ESS Models.- 4.2.4 The Evolution of Gender and Sexual Dimorphism.- 4.2.4.1 ESS Models.- 4.2.4.2 Genetic Models.- 4.3 The Biology of Sexual Dimorphism.- 4.3.1 Disruptive Selection on Homologous Characters.- 4.3.1.1 Biological Circumstances.- 4.3.1.2 Theory on Disruptive Selection in Dioecious Organisms.- 4.3.1.3 Theory on the Evolution of Gender and Sexual Dimorphism.- 4.3.1.4 Disruptive Selection and Sexual Dimorphism in Plants.- 4.3.2 Ecological Competition.- 4.3.2.1 Biological Circumstances.- 4.3.2.2 Theory on Character Displacement Due to Intraspecific Competition.- 4.3.2.3 Competitive Character Displacement and SSS in Dioecious Plants.- 4.3.3 Intersexual Selection.- 4.3.3.1 Biological Circumstances.- 4.3.3.2 Theory on Intersexual Selection.- 4.3.3.3 Mate Choice and Sexual Dimorphism in Plants.- 4.4 Conclusions.- References.- 5 Sexual Dimorphism in Flowers and Inflorescences.- 5.1 Introduction.- 5.2 Patterns.- 5.2.1 Perianth Size.- 5.2.2 Perianth Shape.- 5.2.3 Nectar.- 5.2.4 Vestigial Characters.- 5.2.5 Other Flower Characters.- 5.2.6 Multi-Flower Characters.- 5.2.7 Questions.- 5.3 Evolutionary Hypotheses.- 5.3.1 Sexual Selection and Character Exaggeration.- 5.3.2 Specific Tests, Hypotheses, and Uncertainties.- 5.3.2.1 Perianth Size.- 5.3.2.2 Perianth Shape.- 5.3.2.3 Nectar.- 5.3.2.4 Vestigial Character.- 5.3.2.5 Other Flower Characters: Longevity.- 5.3.2.6 Multi-Flower Characters.- 5.4 Conclusions.- 5.4.1 Towards Quantitative Understanding.- 5.4.2 Size-Number Trade-Offs.- 5.4.3 Costs of Exaggeration.- 5.4.4 Variation in Costs and Benefits.- 5.4.5 Macro evolution.- References.- 6 Sexual Dimorphism in Live History.- 6.1 Introduction.- 6.2 Predictions Based on Sex-Differential Reproductive Investment.- 6.3 Patterns of Sexual Dimorphism in Life-History Traits.- 6.3.1 Response to Stress.- 6.3.2 Case Studies of Two Species in which the Cost of Reproduction Is Higher for Females.- 6.4 Factors Offsetting Between-Sex Differences in the Cost of Reproduction.- 6.4.1 Sexual Dimorphism in the Timing of Investment in Reproduction Versus Growth Within a Season.- 6.4.2 Sexual Dimorphism in the Timing of Flowering Within a Season.- 6.4.3 Sexual Dimorphism in the Frequency of Flowering.- 6.4.4 Sexual Dimorphism in Age of Maturation.- 6.4.5 Sexual Dimorphism in Physiological Traits.- 6.4.6 Sex-Differential Herbivory.- 6.5 The Contrary Case of Silene latifolia.- 6.6 Conclusions.- References.- 7 Dimorphism in Physiology and Morphology.- 7.1 Introduction.- 7.1.1 Causes of Sexual Dimorphism in Physiology and Vegetative Morphology.- 7.1.2 Physiological and Morphological Responses to Natural Selection.- 7.1.3 Physiological and Morphological Responses to Sexual Selection.- 7.1.4 Functional Significance of Dimorphism in Physiology and Morphology.- 7.2 History of Studies on Sexual Dimorphism in Plants.- 7.3 Sexual Dimorphism in Plant Form and Function in Species with SSS.- 7.3.1 Salix (Willow
  • Salicaceae).- 7.3.2 Acer negundo (Boxelder
  • Aceraceae).- 7.3.3 Simmondsia chinensis (Jojoba/Goat Nut
  • Buxaceae).- 7.3.4 Phoradendron juniperinum (Mistletoe
  • Viscaceae).- 7.3.5 Other Species.- 7.4 Sexual Dimorphism in Plant Form and Function in Species Without SSS.- 7.4.1 Silene latifolia (White Campion
  • Caryophyllaceae).- 7.4.2 Leucadendron (Proteaceae).- 7.4.3 Other Species.- 7.4.3.1 Agricultural and Weedy Species.- 7.4.3.2 Populus (Aspen
  • Salicaceae).- 7.5 Conclusions and Future Directions.- References.- 8 Sexual Dimorphism and Biotic Interactions.- 8.1 Introduction.- 8.1.1 Reproductive Allocation and Biotic Interactions.- 8.2 Sexual Differences in Competitive Ability.- 8.3 Sexual Differences in Herbivory.- 8.3.1 Herbivore Preference.- 8.3.2 Correlates of Sexual Differences in Herbivore Damage.- 8.3.3 Herbivore Performance on Male and Female Hosts.- 8.3.4 Sexual Differences in Response to Herbivory.- 8.4 Sexual Differences in Parasitism.- 8.4.1 Foliar Pathogens.- 8.4.2 Flower-Infecting Pathogens.- 8.4.3 Nonfungal Parasites.- 8.5 General Discussion.- 8.5.1 Biotic Interactions and Biased Sex Ratios.- 8.5.2 Evolution of Sexual Differences in Herbivory.- 8.5.3 Future Studies.- References.- 9 Genetics of Gender Dimorphism in Higher Plants.- 9.1 Introduction.- 9.2 Monoecious Plants.- 9.2.1 Gender Dimorphism in Cucumber.- 9.2.2 Molecular Biology of Gender Dimorphism in Maize.- 9.2.2.1 Tasselseed2.- 9.2.2.2 Gibberellin and gender dimorphism in maize.- 9.2.2.3 The Anther ear1 gene.- 9.3 Multigenic gender determination systems in dioecious plants.- 9.3.1 Mercurialis annua.- 9.3.2 A single gender determination locus.- 9.3.3 Sex chromosomes.- 9.3.3.1 Morphologically distinct sex chromosomes.- 9.3.3.2 Structure of sex chromosomes in plants.- 9.3.3.3 X/autosome balance can regulate gender dimorphism.- 9.3.3.4 X/autosome balance in Drosophila melanogaster.- 9.3.4 Comparison of Active Y Sex Chromosomes in Plants and Animals.- 9.3.4.1 The active-Y gender determination of white campion.- 9.3.4.2 The mammalian active-Y gender determination mechanism.- 9.3.4.3 Does dosage compensation occur in white campion?.- 9.3.5 Evolution of the active-Y chromosome: Male sterility.- 9.3.5.1 Cytoplasmic male sterility.- 9.3.5.2 Suppression of carpel or pistil development.- 9.4 Expression of MADS-box genes in unisexual flowers.- 9.5 Conclusions.- References.- 10 Quantitative Genetics of Sexual Dimorphism.- 10.1 Introduction.- 10.2 Quantitative Genetic Models of Sexual Dimorphism.- 10.3 Integration of Quantitative Genetics with Sexual Selection.- 10.4 Correlated Evolution and Divergence of Male and Female Traits in Dioecious Plants.- 10.5 Correlated Evolution and Divergence of Male and Female Function in Hermaphroditic Plants.- 10.6 Conclusions.- 10.7 References.- Taxonomic Index.

「Nielsen BookData」 より

詳細情報

ページトップへ