Real submanifolds in complex space and their mappings
著者
書誌事項
Real submanifolds in complex space and their mappings
(Princeton mathematical series, 47)
Princeton University Press, c1999
大学図書館所蔵 全60件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions.
The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.
目次
PrefaceCh. IHypersurfaces and Generic Submanifolds in C[superscript N]3Ch. IIAbstract and Embedded CR Structures35Ch. IIIVector Fields: Commutators, Orbits, and Homogeneity62Ch. IVCoordinates for Generic Submanifolds94Ch. VRings of Power Series and Polynomial Equations119Ch. VIGeometry of Analytic Discs156Ch. VIIBoundary Values of Holomorphic Functions in Wedges184Ch. VIIIHolomorphic Extension of CR Functions205Ch. IXHolomorphic Extension of Mappings of Hypersurfaces241Ch. XSegre Sets281Ch. XINondegeneracy Conditions for Manifolds315Ch. XIIHolomorphic Mappings of Submanifolds349Ch. XIIIMappings of Real-algebraic Subvarieties379References390Index401
「Nielsen BookData」 より