Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems
著者
書誌事項
Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems
(Memoirs of the American Mathematical Society, no. 658)
American Mathematical Society, 1999
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"March 1999, volume 138, number 658 (first of 4 numbers)" -- T.p.
Includes bibliographical references
内容説明・目次
内容説明
In this work, the author examines the following: When the Hamiltonian system $m_i \ddot{q}_i + (\partial V/\partial q_i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),\; \forall t \in \mathfrak R$ (where $q_{i} \in \mathfrak R^{\ell}$, $\ell \ge 3$, $1 \le i \le n$, $q = (q_{1},...,q_{n})$ and $V = \sum V_{ij}(t,q_{i}-q_{j})$ with $V_{ij}(t,\xi)$ $T$-periodic in $t$ and singular in $\xi$ at $\xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.
目次
Introduction Breakdown of the Palais-Smale condition Morse Lemma near infinity A modified functional for the 4-body problem Retraction theorem and related results for the 4-body problem Generalization of the n-body problem.
「Nielsen BookData」 より