Tensor products and independent sums of L[p]-spaces, 1<p<∞
著者
書誌事項
Tensor products and independent sums of L[p]-spaces, 1<p<∞
(Memoirs of the American Mathematical Society, no. 660)
American Mathematical Society, 1999
大学図書館所蔵 件 / 全18件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"March 1999, volume 138, number 660 (third of 4 numbers)" -- T.p
Includes bibliographical references (p. 76-77)
[p]は下つき文字
内容説明・目次
内容説明
Two methods of constructing infinitely many isomorphically distinct $\Cal L p$-spaces have been published. In this volume, the author shows that these constructions yield very different spaces and in the process develop methods for dealing with these spaces from the isomorphic viewpoint.
目次
Introduction The constructions of $\mathcal L_p$-spaces Isomorphic properties of $(p,2)$--sums and the spaces $R^\alpha_p$ The isomorphic classification of $R^\alpha_p$, $\alpha <\omega_1$ Isomorphisms from $X_p\otimes X_p$ into $(p,2)$--sums Selection of bases in $X_p\otimes X_p$ $X_p\otimes X_p$-preserving operators on $X_p\otimes X_p$ Isomorphisms of $X_p\otimes X_p$ onto complemented subspaces of $(p,2)$--sums $X_p\otimes X_p$ is not in the scale $R^\alpha_p$, $\alpha < \omega_1$ Final remarks and open problems Bibliography.
「Nielsen BookData」 より