Particles and fields
著者
書誌事項
Particles and fields
(CRM series on mathematical physics)
Springer, c1999
大学図書館所蔵 件 / 全23件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The present volume has its source in the CAP-CRM summer school on "Particles and Fields" that was held in Banff in the summer of 1994. Over the years, the Division of Theoretical Physics of the Canadian Associa- tion of Physicists (CAP) has regularly sponsored such schools on various theoretical and experimental topics. In 1994, the Centre de Recherches Mathematiques (CRM) lent its support to the event. This institute, located in Montreal, is one of Canada's national research centers in the mathe- matical sciences. Its mandate includes the organization of scientific events across Canada and since 1994 the CRM has been holding a yearly summer school in Banff as part of its thematic program. The summer school, whose lectures are collected here, has thus become a tradition. The focus of the school was integrable theories, matrix models, statistical systems, field theory and its applications to condensed matter physics, as well as certain aspects of algebra, geometry, and topology. This covers some of the most significant advances in modern theoretical physics. The present volume updates and expands these lectures and reflects the high pedagogical level of the school.
The first chapter by E. Corrigan describes some of the remarkable fea- tures of the integrable Toda field theories which are associated with affine Dynkin diagrams. The second chapter by J. Feldman, H. Knorrer, D. Leh- mann, and E.
目次
1 Recent Developments in Affine Toda Quantum Field Theory.- 1 Introduction.- 2 Classical Integrability and Classical Data.- 2.1 Geometry Associated with the Coxeter Element.- 3 Aspects of the Quantum Field Theory.- 4 Dual Pairs.- 5 A Word on Solitons.- 6 Other Matters.- 7 References.- 2 A Class of Fermi Liquids.- 1 Introduction.- 2 Four-Legged Diagrams.- 2.1 The Particle-Particle Bubble.- 2.2 The Particle-Hole Bubble.- 2.3 Higher-Order Diagrams.- 3 A Single-Slice Fermionic Cluster Expansion.- 4 References.- 3 Quantum Groups from Path Integrals.- 1 Classical Field Theory.- 1.1 Classical Actions.- 1.2 The Wess-Zumino-Witten Action.- 2 Categories, Finite Groups, and Covering Spaces.- 2.1 Going Further.- 2.2 Finite-Gauge Theory.- 3 Generalized Path Integrals.- 3.1 Path Integral Quantization.- 3.2 Beyond Quantum Hilbert Spaces.- 3.3 Quantum Finite-Gauge Theory.- 4 The Quantum Group.- 4.1 The 2-Hilbert Space.- 4.2 Locality and Gluing.- 5 References.- 4 Half Transfer Matrices in Solvable Lattice Models.- 1 The Six-Vertex Model.- 2 The Antiferromagnetic Regime.- 3 Corner Transfer Matrix.- 4 Half Transfer Matrix.- 5 Commutation Relations.- 6 Correlation Functions.- 7 Two-Point Functions.- 8 Discussion.- 9 References.- 5 Matrix Models as Integrable Systems.- 1 Introduction.- 2 The Basic Example: Discrete 1-Matrix Model.- 2.1 Ward Identities.- 2.2 CFT Interpretation of 1-Matrix Model.- 2.3 1-Matrix Model in Eigenvalue Representation.- 2.4 Kontsevich-Like Representation of the 1-Matrix Model.- 3 Generalized Kontsevich Model.- 3.1 Kontsevich Integral. The First Step.- 3.2 Itzykson-Zuber Integral and Duistermaat-Heckmann Theorem.- 3.3 Kontsevich Integral. The Second Step.- 3.4 "Phases" of Kontsevich Integral. GKM as the "Quantum Piece" of $${\mathcal{F}_V}\{ L\} $$ in the Kontsevich Phase.- 3.5 Relation Between Time-and Potential-Dependencies.- 3.6 Kac-Schwarz Problem.- 3.7 Ward Identities for GKM.- 4 Kp/Toda ?-Function in Terms of Free Fermions.- 4.1 Explicit Definition.- 4.2 Basic Determinant Formula for the Free-Fermion Correlator.- 4.3 KP Hierarchy and Other Reductions.- 4.4 Fermion Correlator in Miwa Coordinates.- 4.5 1-Matrix Model versus Toda-Chain Hierarchy.- 5 ?-Function as a Group-Theoretical Quantity.- 5.1 From Intertwining Op0F4erators to Bilinear Equations...- 5.2 The Case of KP/Toda ?-Functions.- 5.3 Example of SL(2) q.- 5.4 Comments on the Quantum Deformation of KP/Toda.- ?-Functions.- 6 Conclusion.- 7 References.- 6 Localization, Equivariant Cohomology, and Integration Formulas 211.- 1 Symplectic Geometry.- 2 Equivariant Cohomology.- 3 Duistermaat-Heckman Integration Formula.- 4 Degeneracies.- 5 Equivariant Characteristic Classes.- 6 Loop Space.- 7 Example: Atiyah-Singer Index Theorem.- 8 Duistermaat-Heckman in Loop Space.- 9 General Integrable Models.- 10 Mathai-Quillen Formalism.- 11 Short Review of Morse Theory.- 12 Equivariant Mathai-Quillen Formalism.- 13 Equivariant Morse Theory.- 14 Loop Space and Morse Theory.- 15 Loop Space and Equivariant Morse Theory.- 16 Poincare Supersymmetry and Equivariant Cohomology..- 17 References.- 7 Systems of Calogero-Moser Type.- 1 Introduction.- 2 Classical Nonrelativistic Calogero-Moser and Toda Systems.- 2.1 Background: Classical Mechanics/Symplectic Geometry.- 2.2 Calogero-Moser Systems.- 2.3 Toda Systems.- 3 Relativistic Versions at the Classical Level.- 3.1 The Defining Dynamics and its Commuting Integrals...- 3.2 Lax Matrices and Their Interrelationships.- 4 Quantum Calogero-Moser and Toda Systems.- 4.1 Background: Quantum Mechanics/Hilbert Space Theory.- 4.2 The Nonrelativistic Case: Commuting PDOs.- 4.3 The Relativistic Case: Commuting A?Os.- 5 Action-Angle Transforms.- 5.1 Introductory Examples.- 5.2 Wave Maps and Pure Soliton Systems.- 5.3 Systems of Type I, II, and III.- 6 Eigenfunction Transforms.- 6.1 Preliminaries.- 6.2 Type III Eigenfunctions for Arbitrary N.- 6.3 Type II and IV Eigenfunctions for N = 2.- 7 References.- 8 Discrete Gauge Theories.- 1 Broken Symmetry Revisited.- 2 Basics.- 2.1 Introduction.- 2.2 Braid Groups.- 2.3 ?N Gauge Theory.- 2.4 Non-Abelian Discrete Gauge Theories.- 3 Algebraic Structure.- 3.1 Quantum Double.- 3.2 Truncated Braid Groups.- 3.3 Fusion, Spin, Braid Statistics, and All That.- 4 $${\overline D _2}$$ Gauge Theory.- 4.1 Alice in Physics.- 4.2 Scattering Doublet Charges Off Alice Fluxes.- 4.3 Non-Abelian Braid Statistics.- 4.4 Aharonov-Bohm Scattering.- 4.5 B(3,4) and P(3,4).- 5 Concluding Remarks and Outlook.- 6 References.- 9 Quantum Hall Fluids as W1+?
Minimal Models.- 1 Introduction.- 2 Dynamical Symmetry and Kinematics of Incompressible Fluids.- 2.1 Classical Fluids.- 2.2 Quantum Fluids and Their Edge Excitations.- 2.3 Classification of QHE Universality Classes.- 3 Existing Theories of Edge Excitations and Experiments.- 3.1 Hierarchical Trial Wave Functions.- 3.2 The Chiral Boson Theory of the Edge Excitations..- 3.3 The Jain Hierarchy.- 3.4 Experiments.- 4
W1+? Minimal Models.- 4.1 The Theory of
W1+? Representations.- 4.2 The
W1+? Minimal Models.- 4.3 Non-Abelian Fusion Rules and Non-Abelian Statistics.- 4.4 The Degeneracy of Excitations Above the Ground State.- 4.5 Remarks on the SU(m) and $$S\widehat {U(m}{)_1}$$ Symmetries.- 5 Further Developments.- 6 References.- 10 On the Spectral Theory of Quantum Vertex Operators 469 Pavel I. Etingof.- 1 Basic Definitions.- 1.1 Quantum Groups.- 1.2 Representations.- 1.3 Vertex Operators.- 1.4 The Fock Space.- 1.5 Bosonization of $${U_q}(\widehat {\mathfrak{s}{\mathfrak{l}_2}})$$.- 1.6 Bosonization of Vertex Operators.- 1.7 Boson-Fermion Correspondence.- 2 Spectral Properties of Vertex Operators.- 2.1 Vertex Operators as Power Series in q.- 2.2 Composition of Vertex Operators.- 2.3 The Operators F+-(0) and F-+(0).- 2.4 The Highest Eigenvalue of F-+(q), F+-(q).- 3 The Semi-Infinite Tensor Product Construction.- 3.1 The Kyoto Conjecture.- 3.2 The Kyoto Homomorphism.- 4 Computation of the Leading Eigenvalue and Eigenvector.- 5 References.
「Nielsen BookData」 より