Practical foundations of mathematics
Author(s)
Bibliographic Information
Practical foundations of mathematics
(Cambridge studies in advanced mathematics, 59)
Cambridge University Press, 1999
- : hardback
Available at 52 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Transferred to digital printing 2003"--T.p. verso of 2003 printing
Includes bibliographical references (p. [530]-552) and index
Description and Table of Contents
Description
Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.
Table of Contents
- 1. First order reasoning
- 2. Types and induction
- 3. Posets and lattices
- 4. Cartesian closed categories
- 5. Limits and colimits
- 6. Structural recursion
- 7. Adjunctions
- 8. Algebra with dependent types
- 9. The quantifiers.
by "Nielsen BookData"