Stochastic dynamics
Author(s)
Bibliographic Information
Stochastic dynamics
Springer, c1999
- : hardcover
Available at 33 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
:hardcoverC-P||Bremen||1997.499023968
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Focusing on the mathematical description of stochastic dynamics in discrete as well as in continuous time, this book investigates such dynamical phenomena as perturbations, bifurcations and chaos. It also introduces new ideas for the exploration of infinite dimensional systems, in particular stochastic partial differential equations. Example applications are presented from biology, chemistry and engineering, while describing numerical treatments of stochastic systems.
Table of Contents
Stability Along Trajectories at a Stochastic Bifurcation Point.- Bifurcations of One-Dimensional Stochastic Differential Equations.- P-Bifurcations in the Noisy Duffing-van der Pol Equation.- The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation.- Numerical Approximation of Random Attractors.- Random Hyperbolic Systems.- Some Questions in Random Dynamical Systems Involving Real Noise Processes.- Topological, Smooth, and Control Techniques for Perturbed Systems.- Perturbation Methods for Lyapunov Exponents.- The Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equations.- Towards a Theory of Random Numerical Dynamics.- Canonical Stochastic Differential Equations based on Levy Processes and Their Supports.- On the Link Between Fractional and Stochastic Calculus.- Asymptotic Curvature for Stochastic Dynamical Systems.- Stochastic Analysis on (Infinite-Dimensional) Product Manifolds.- Evolutionary Dynamics in Random Environments.- Microscopic and Mezoscopic Models for Mass Distributions.
by "Nielsen BookData"