Semimodular lattices : theory and applications
著者
書誌事項
Semimodular lattices : theory and applications
(Encyclopedia of mathematics and its applications / edited by G.-C. Rota, v. 73)
Cambridge University Press, 1999
大学図書館所蔵 全81件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
In Semimodular Lattices: Theory and Applications Manfred Stern uses successive generalizations of distributive and modular lattices to outline the development of semimodular lattices from Boolean algebras. He focuses on the important theory of semimodularity, its many ramifications, and its applications in discrete mathematics, combinatorics, and algebra. The book surveys and analyzes Garrett Birkhoff's concept of semimodularity and the various related concepts in lattice theory, and it presents theoretical results as well as applications in discrete mathematics group theory and universal algebra. The author also deals with lattices that are 'close' to semimodularity or can be combined with semimodularity, e.g. supersolvable, admissible, consistent, strong, and balanced lattices. Researchers in lattice theory, discrete mathematics, combinatorics, and algebra will find this book invaluable.
目次
- Preface
- 1. From Boolean algebras to semimodular lattices
- 2. M-symmetric lattices
- 3. Conditions related to semimodularity, 0-conditions and disjointness properties
- 4. Supersolvable and admissible lattices, consistent and strong lattices
- 5. The covering graph
- 6. Semimodular lattices of finite length
- 7. Local distributivity
- 8. Local modularity
- 9. Congruence semimodularity
- Master reference list
- Table of notation
- Index.
「Nielsen BookData」 より