Hyperbolic functional differential inequalities and applications
Author(s)
Bibliographic Information
Hyperbolic functional differential inequalities and applications
(Mathematics and its applications, v. 486)
Kluwer Academic, c1999
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book is intended as a self-contained exposition of hyperbolic functional dif ferential inequalities and their applications. Its aim is to give a systematic and unified presentation of recent developments of the following problems: (i) functional differential inequalities generated by initial and mixed problems, (ii) existence theory of local and global solutions, (iii) functional integral equations generated by hyperbolic equations, (iv) numerical method of lines for hyperbolic problems, (v) difference methods for initial and initial-boundary value problems. Beside classical solutions, the following classes of weak solutions are treated: Ca ratheodory solutions for quasilinear equations, entropy solutions and viscosity so lutions for nonlinear problems and solutions in the Friedrichs sense for almost linear equations. The theory of difference and differential difference equations ge nerated by original problems is discussed and its applications to the constructions of numerical methods for functional differential problems are presented. The monograph is intended for different groups of scientists. Pure mathemati cians and graduate students will find an advanced theory of functional differential problems. Applied mathematicians and research engineers will find numerical al gorithms for many hyperbolic problems. The classical theory of partial differential inequalities has been described exten sively in the monographs [138, 140, 195, 225). As is well known, they found applica tions in differential problems. The basic examples of such questions are: estimates of solutions of partial equations, estimates of the domain of the existence of solu tions, criteria of uniqueness and estimates of the error of approximate solutions.
Table of Contents
Preface. 1. Initial Problems on the Haar Pyramid. 2. Existence of Solutions on the Haar Pyramid. 3. Numerical Methods for Initial Problems. 4. Initial Problems on Unbounded Domains. 5. Mixed Problems for Nonlinear Equations. 6. Numerical Method of Lines. 7. Generalized Solutions. 8. Functional Integral Equations. Bibliography. Index.
by "Nielsen BookData"