Reading the Principia : the debate on Newton's mathematical methods for natural philosophy from 1687 to 1736
著者
書誌事項
Reading the Principia : the debate on Newton's mathematical methods for natural philosophy from 1687 to 1736
Cambridge University Press, 1999
- : hbk
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 265-279) and index
内容説明・目次
内容説明
Isaac Newton's Principia is considered one of the masterpieces in the history of science. The mathematical methods employed by Newton in the Principia stimulated much debate among his contemporaries, especially Leibniz, Huygens, Bernoulli and Euler, who debated their merits and drawbacks. Among the questions they asked were: How should natural philosophy be mathematized?; Is it legitimate to use uninterpreted symbols?; Is it possible to depart from the established Archimedean or Galilean/Huygenian tradition of geometrizing nature?; What is the value of elegance and conciseness?; What is the relation between Newton's geometrical methods and the calculus? This book explains how Newton addressed these issues, taking into consideration the values that directed the research of Newton and his contemporaries. This book will be of interest to researchers and advanced students in departments of history of science, philosophy of science, physics, mathematics and astronomy.
目次
- 1. Purpose of this book
- Part I. Newton's Methods: 2. Newton's methods of series and fluxions
- 3. The mathematical methods of the Principia
- Part II. Three Readers: 4. Newton: between tradition and innovation
- 5. Huygens: the Principia and proportion theory
- 6. Leibniz: not equivalent in practice
- Part III. Two Schools: 7. Britain: in the wake of the Principia
- 8. Basel: challenging the Principia
- 9. Conclusion: Newtonians, Leibnizians and Eulerians
- References.
「Nielsen BookData」 より