Smooth quasigroups and loops
著者
書誌事項
Smooth quasigroups and loops
(Mathematics and its applications, v. 492)
Kluwer Academic, c1999
大学図書館所蔵 全17件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 229-243) and index
内容説明・目次
内容説明
During the last twenty-five years quite remarkable relations between nonas sociative algebra and differential geometry have been discovered in our work. Such exotic structures of algebra as quasigroups and loops were obtained from purely geometric structures such as affinely connected spaces. The notion ofodule was introduced as a fundamental algebraic invariant of differential geometry. For any space with an affine connection loopuscular, odular and geoodular structures (partial smooth algebras of a special kind) were introduced and studied. As it happened, the natural geoodular structure of an affinely connected space al lows us to reconstruct this space in a unique way. Moreover, any smooth ab stractly given geoodular structure generates in a unique manner an affinely con nected space with the natural geoodular structure isomorphic to the initial one. The above said means that any affinely connected (in particular, Riemannian) space can be treated as a purely algebraic structure equipped with smoothness. Numerous habitual geometric properties may be expressed in the language of geoodular structures by means of algebraic identities, etc.. Our treatment has led us to the purely algebraic concept of affinely connected (in particular, Riemannian) spaces; for example, one can consider a discrete, or, even, finite space with affine connection (in the form ofgeoodular structure) which can be used in the old problem of discrete space-time in relativity, essential for the quantum space-time theory.
目次
Preface. Introduction. 0. Introductory Survey: Quasigroups, Loopuscular Geometry and Nonlinear Geometric Algebra. Part One: Fundamental Structures of Nonlinear Geometric Algebra. 1. Basic Algebraic Structures. 2. Semidirect Products of a Quasigroup by its Transassociants. 3. Basic Smooth Structures. Part Two: Smooth Loops and Hyperalgebras. 4. Infinitesimal Theory of Smooth Loops. 5. Smooth Bol Loops and Bol Algebras. 6. Smooth Moufang Loops and Mal'Cev Algebras. 7. Smooth Hyporeductive and Pseudoreductive Loops. Part Three: Loopuscular Geometry. 8. Affine Connections and Loopuscular Structures. 9. Reductive Geoodular Spaces. 10. Symmetric Geoodular Spaces. 11. s-Paces. 12. Geometry of Smooth Bol and Moufang Loops. Appendices. Bibliography. Index.
「Nielsen BookData」 より