Linear models : least squares and alternatives
著者
書誌事項
Linear models : least squares and alternatives
(Springer series in statistics)
Springer, c1999
2nd ed
大学図書館所蔵 全31件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [403]-419) and index
内容説明・目次
内容説明
This book provides an up-to-date account of the theory and applications of linear models. It can be used as a text for courses in statistics at the graduate level as well as an accompanying text for other courses in which linear models play a part. The authors present a unified theory of inference from linear models with minimal assumptions, not only through least squares theory, but also using alternative methods of estimation and testing based on convex loss functions and general estimating equations.Some of the highlights include: a special emphasis on sensitivity analysis and model selection; a chapter devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models; a chapter devoted to incomplete data sets; an extensive appendix on matrix theory, useful to researchers in econometrics, engineering, and optimization theory; a chapter devoted to the analysis of categorical data based on a unified presentation of generalized linear models including GEE- methods for correlated response; a chapter devoted to incomplete data sets including regression diagnostics to identify Non-MCAR-processes.
The material covered will be invaluable not only to graduate students, but also to research workers and consultants in statistics.Helge Toutenburg is Professor for Statistics at the University of Muenchen. He has written about 15 books on linear models, statistical methods in quality engineering, and the analysis of designed experiments. His main interest is in the application of statistics to the fields of medicine and engineering.
目次
Introduction * Linear Models * The Linear Regression Model * The Generalized Linear Regression Model * Exact and Stochastic Linear Restrictions * Prediction Problems in the Generalized Regression Model * Linear Mixed Models * Sensitivity Analysis * Analysis of Incomplete Data Sets * Robust Regression * Models for Categorical Response Variables * Fitting Smooth Functions
「Nielsen BookData」 より