Shadowing in dynamical systems
著者
書誌事項
Shadowing in dynamical systems
(Lecture notes in mathematics, 1706)
Springer, c1999
大学図書館所蔵 全88件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [259]-267) and index
内容説明・目次
内容説明
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
目次
Chapter 1. Shadowing Near an Invariant Set 1.1 Basic Definitions 1.2 Shadowing Near a Hyperbolic Set for a Diffeomorphism 1.2.1 Hyperbolic Sets 1.2.2 The Classical Shadowing Lemma 1.2.3 Shadowing for a Family of Approximate Trajectories 1.2.4 The Method of Bowen 1.3 Shadowing for Mappings of Banach Spaces 1.3.1 Shadowing for a Sequence of Mappings 1.3.2 Conditions of Uniqueness 1.3.3 Application to the Classical Shadowing Lemma 1.3.4 Theorems of Chow-Lin-Palmer and Steinlein-Walther 1.3.5 Finite-Dimensional Case 1.4 Limit Shadowing 1.4.1 Limit Shadowing Property 1.4.2 Lp-Shadowing 1.4.3 The Sacker-Sell Spectrum and Weighted Shadowing 1.4.4 Asymptotic Pseudotrajectories 1.5 Shadowing for Flows Chapter 2. Topologically Stable, Structurally Stable, and Generic Systems 2.1 Shadowing and Topological Stability 2.2 Shadowing in Structurally Stable Systems 2.2.1 The Case of a Flow 2.2.2 The Case of a Diffeomorphism 2.3 Shadowing in Two-Dimensional Diffeomorphisms 2.4 Co-Genericity of Shadowing for Homeomorphisms Chapter 3. Systems with Special Structure 3.1 One-Dimensional Systems 3.2 Linear and Linearly Induced Systems 3.3 Lattice Systems 3.4 Global Attractors for Evolution Systems Chapter 4. Numerical Applications of Shadowing 4.1 Finite Shadowing 4.2 Periodic Shadowing for Flows 4.3 Approximation of Spectral Characteristics 4.3.1 Evaluation of Upper Lyapunov Exponents 4.3.2 Approximation of the Morse Spectrum 4.4 Discretizations of PDEs 4.4.1 Shadowing in Discretizations 4.4.2 Discretization Errors on Unbounded Time Intervals
「Nielsen BookData」 より