Geometric mechanics
著者
書誌事項
Geometric mechanics
Wiley, c2000
電子リソースにアクセスする 全1件
並立書誌 全1件
-
-
Geometric mechanics / Richard Talman
BA74644342
-
Geometric mechanics / Richard Talman
大学図書館所蔵 全17件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"A Wiley-Interscience publication."
Includes bibliographies and index
内容説明・目次
内容説明
Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest ...APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C.
Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.
目次
- SOLVABLE SYSTEMS
- Review of Solvable Systems
- THE GEOMETRY OF MECHANICS
- Geometry of Mechanics I: Linear
- Geometry of Mechanics II: Curvilinear
- Geometry of Mechanics III: Multilinear
- LAGRANGIAN MECHANICS
- Lagrange-Poincari Description of Mechanics
- Simplifying the Poincari Equation With Group Theory
- Conservation Laws and Symmetry
- NEWTONIAN MECHANICS
- Gauge-Invariant Mechanics
- Geometric Phases
- HAMILTONIAN MECHANICS
- Hamiltonian Treatment of Geometric Optics
- Hamilton-Jacobi Theory
- Relativistic Mechanics
- Symplectic Mechanics
- APPROXIMATE METHODS
- Analytic Basic for Approximation
- Linear Systems
- Perturbation Theory
- Index.
「Nielsen BookData」 より