Bifurcations and catastrophes : geometry of solutions to nonlinear problems

書誌事項

Bifurcations and catastrophes : geometry of solutions to nonlinear problems

Michel Demazure ; translated from the French by David Chillingworth

(Universitext)

Springer, c2000

タイトル別名

Géométrie : catastrophes et bifurcations

大学図書館所蔵 件 / 53

この図書・雑誌をさがす

注記

Originally published: Ellipses, 1989

Includes bibliographical references (p. [293]-294) and index

内容説明・目次

内容説明

Based on a lecture course, this text gives a rigorous introduction to nonlinear analysis, dynamical systems and bifurcation theory including catastrophe theory. Wherever appropriate it emphasizes a geometrical or coordinate-free approach allowing a clear focus on the essential mathematical structures. It brings out features common to different branches of the subject while giving ample references for more advanced or technical developments.

目次

  • Introduction Notation 1. Local Inversion 1.1 Introduction 1.2 A Preliminary Statement 1.3 Partial Derivatives. Strictly Differentiable Functions 1.4 The Local Inversion Theorem: General Statement 1.5 Functions of Class Cr 1.6 The Local Inversion Theorem for Cr maps 1.8 Generalizations of the Local Inversion Theorem 2. Submanifolds 2.1 Introduction 2.2 Definitions of Submanifolds 2.3 First Examples 2.4 Tangent Spaces of a Submanifold 2.5 Transversality: Intersections 2.6 Transversality: Inverse Images 2.7 The Implicit Function Theorem 2.8 Diffeomorphisms of Submanifolds 2.9 Parametrizations, Immersions and Embeddings 2.10 Proper Maps: Proper Embeddings 2.11 From Submanifolds to Manifolds 2.12 Some History 3. Transversality Theorems 3.1 Introduction 3.2 Countability Properties in Topology 3.3 Negligible Subsets 3.4 The Complement of the Image of a Submanifold 3.5 Sard's Theorem 3.6 Critical Points, Submersions and the Geometrical Form of Sard's Theorem 3.7 The Transversality Theorem: Weak Form 3.8 Jet Spaces 3.9 The Thom Transversality Theorem 3.10 Some History 4. Classification of Differentiable Functions 4.1 Introduction 4.2 Taylor Formulae Without Remainder 4.3 The Problem of Classification of Maps 4.4 Critical Points: the Hessian Form 4.5 The Morse Lemma 4.6 Fiburcations of Critical Points 4.7 Apparent Contour of a Surface in R3 4.8 Maps from R2 into R2. 4.9 Envelopes of Plane Curves 4.10 Caustics 4.11 Genericity and Stability 5. Catastrophe Theory 5.1 Introduction 5.2 The Language of Germs 5.3 r-sufficient Jets
  • r-determined Germs 5.4 The Jacobian Ideal 5.5 The Theorem on Sufficiency of Jets 5.6 Deformations of a Singularity 5.7 The Principles of Catastrophe Theory 5.8 Catastrophes of Cusp Type 5.9 A Cusp Example 5.10 Liquid-Vapour Equilibrium 5.11 The Elementary Catastrophes 5.12 Catastrophes and Controversies 6. Vector Fields 6.1 Introduction 6.2 Exemples of Vector Fields (Rn Case) 6.3 First Integrals 6.4 Vector Fields on Submanifolds 6.5 The Uniqueness Theorem and Maximal Integral Curves 6.6 Vector Fields on Submanifolds 6.7 One-parameter Groups of Diffeomorphisms 6.8 The Existence Theorem (Local Case) 6.9 The Existence Theorem (Global Case) 6.10 The Integral Flow of a Vector Field 6.11 The Main Features of a Phase Portrait 6.12 Discrete Flows and Continuous Flows 7. Linear Vector Fields 7.1 Introduction 7.2 The Spectrum of an Endomorphism 7.3 Space Decomposition Corresponding to Partition of the Spectrum 7.4 Norm and Eigenvalues 7.5 Contracting, Expanding and Hyperbolic Endommorphisms 7.6 The Exponential of an Endomorphism 7.7 One-parameter Groups of Linear Transformations 7.8 The Image of the Exponential 7.9 Contracting, Expanding and Hyperbolic Exponential Flows 7.10 Topological Classification of Linear Vector Fields 7.11 Topological Classification of Automorphisms 7.12 Classification of Linear Flows in Dimension 2 8 Singular Pints of Vector Fields 8.1 Introduction 8.2 The Classification Problem 8.3 Linearization of a Vector Field in the Neighbourhodd of a Singular Point 8.4 Difficulties with Linearization 8.5 Singularities with Attracting Linearization 8.6 Liapunov Theory 8.7 The Theorems of Grobman and Hartman 8.8 Stable and Unstable Manifolds of a Hyperbolic Singularity 8.9 Differentiable Linearization: Statement of the Problem 8.10 Differentiable Linearization: Resonances 8.11 Differentiable Linearization: The Theorems of Sternberg and Hartman 8.12 Linearization in Dimenension 2 8.13 Some Historical Landmarks 9 Closed Orbits - Structural Stability 9.1 Introduction 9.2 The Poincare Map 9.3 Characteristic Multipliers of a Closed Orbit 9.4 Attracting Closed Orbits 9.5

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA44688611
  • ISBN
    • 3540521186
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    fre
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    viii, 301 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ