Homogeneous spaces and the Riccati equation in the calculus of variations
Author(s)
Bibliographic Information
Homogeneous spaces and the Riccati equation in the calculus of variations
(Encyclopaedia of mathematical sciences / editor-in-chief, R.V. Gamkrelidze, v. 86 . Control theory and optimization ; 1)
Springer, c2000
- Other Title
-
Odnorodnye Prostranstva i uravnenie rikkati v variatsionnom ischislenii
Available at 103 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Originally published: Moscow : Faktorial, 1998
Bibliography: p. [276]-281
Includes index
Description and Table of Contents
Description
The only monograph on the topic, this book concerns geometric methods in the theory of differential equations with quadratic right-hand sides, closely related to the calculus of variations and optimal control theory. Based on the author's lectures, the book is addressed to undergraduate and graduate students, and scientific researchers.
Table of Contents
1. Classical Calculus of Variations.- 2. Riccati Equation in the Classical Calculus of Variations.- 3. Lie Groups and Lie Algebras.- 4. Grassmann Manifolds.- 5. Matrix Double Ratio.- 6. Complex Riccati Equations.- 7. Higher-Dimensional Calculus of Variations.- 8. On the Quadratic System of Partial Differential Equations Related to the Minimization Problem for a Multiple Integral.- Epilogue.- Appendix to the English Edition.- References.
by "Nielsen BookData"