Random walks on infinite graphs and groups
著者
書誌事項
Random walks on infinite graphs and groups
(Cambridge tracts in mathematics, 138)
Cambridge University Press, 2000
- : hbk
大学図書館所蔵 全73件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 316-330) and index
内容説明・目次
内容説明
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
目次
- Part I. The Type Problem: 1. Basic facts
- 2. Recurrence and transience of infinite networks
- 3. Applications to random walks
- 4. Isoperimetric inequalities
- 5. Transient subtrees, and the classification of the recurrent quasi transitive graphs
- 6. More on recurrence
- Part II. The Spectral Radius: 7. Superharmonic functions and r-recurrence
- 8. The spectral radius
- 9. Computing the Green function
- 10. Spectral radius and strong isoperimetric inequality
- 11. A lower bound for simple random walk
- 12. Spectral radius and amenability
- Part III. The Asymptotic Behaviour of Transition Probabilities: 13. The local central limit theorem on the grid
- 14. Growth, isoperimetric inequalities, and the asymptotic type of random walk
- 15. The asymptotic type of random walk on amenable groups
- 16. Simple random walk on the Sierpinski graphs
- 17. Local limit theorems on free products
- 18. Intermezzo
- 19. Free groups and homogenous trees
- Part IV. An Introduction to Topological Boundary Theory: 20. Probabilistic approach to the Dirichlet problem, and a class of compactifications
- 21. Ends of graphs and the Dirichlet problem
- 22. Hyperbolic groups and graphs
- 23. The Dirichlet problem for circle packing graphs
- 24. The construction of the Martin boundary
- 25. Generalized lattices, Abelian and nilpotent groups, and graphs with polynomial growth
- 27. The Martin boundary of hyperbolic graphs
- 28. Cartesian products.
「Nielsen BookData」 より