Analysis and geometry on complex homogeneous domains
Author(s)
Bibliographic Information
Analysis and geometry on complex homogeneous domains
(Progress in mathematics, v. 185)
Birkhäuser, c2000
- : us
- : sz
Available at 67 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [535]-536) and index
Description and Table of Contents
- Volume
-
: us ISBN 9780817641382
Description
A number of important topics in complex analysis and geometry are
covered in this excellent introductory text. Written by experts in
the subject, each chapter unfolds from the basics to the more complex.
The exposition is rapid-paced and efficient, without compromising
proofs and examples that enable the reader to grasp the essentials.
The most basic type of domain examined is the bounded symmetric
domain, originally described and classified by Cartan and Harish-
Chandra. Two of the five parts of the text deal with these domains:
one introduces the subject through the theory of semisimple Lie
algebras (Koranyi), and the other through Jordan algebras and triple
systems (Roos). Larger classes of domains and spaces are furnished by
the pseudo-Hermitian symmetric spaces and related R-spaces. These
classes are covered via a study of their geometry and a presentation
and classification of their Lie algebraic theory (Kaneyuki).
In the fourth part of the book, the heat kernels of the symmetric
spaces belonging to the classical Lie groups are determined (Lu).
Explicit computations are made for each case, giving precise results
and complementing the more abstract and general methods presented.
Also explored are recent developments in the field, in particular, the
study of complex semigroups which generalize complex tube domains and
function spaces on them (Faraut).
This volume will be useful as a graduate text for students of Lie
group theory with connections to complex analysis, or as a self-study
resource for newcomers to the field. Readers will reach the frontiers
of the subject in a considerably shorter time than with existing
texts.
Table of Contents
I Function Spaces on Complex Semi-groups by Jacques Faraut.- I Hilbert Spaces of Holomorphic Functions.- I.1 Reproducing kernels.- I.2 Invariant Hilbert spaces of holomorphic functions..- II Invariant Cones and Complex Semi-groups.- II.1 Complex semi-groups.- 1I.2 Invariant cones in a representation space.- II.3 Invariant cones in a simple Lie algebra.- III Positive Unitary Representations.- III.1 Self-adjoint operators.- III.2 Unitary representations.- III.3 Positive unitary representations.- IV Hilbert Function Spaces on Complex Semi-groups.- IV.1 Schur orthogonality relations.- IV.2 The Hardy space of a complex semi-group.- IV.3 The Cauchy-Szegoe kernel and the Poisson kernel.- IV.4 Spectral decomposition of the Hardy space.- V Hilbert Function Spaces on SL(2,?).- V.1 Complex Olshanski semi-group in SL(2,?).- V.2 Irreducible positive unitary representations.- V.3 Characters and formal dimensions of the representations ?m.- V.4 Bi-invariant Hilbert spaces of holomorphic functions.- V.5 The Hardy space.- V.6 The Bergman space.- VI Hilbert Function Spaces on a Complex Semi-simple Lie Group.- VI.1 Bounded symmetric domains.- VI.2 Irreducible positive unitary representations.- VI.3 Characters and formal dimensions.- VI.4 Bi-invariant Hilbert spaces of holomorphic functions.- References.- II Graded Lie Algebras and Pseudo-hermitian Symmetric Spaces by Soji Kaneyuki.- I Semisimple Graded Lie Algebras.- I.1 Root theory of real semisimple Lie algebras.- I.2 Semisimple graded Lie algebras.- I.3 Example.- I.4 Tables.- II Symmetric R-Spaces.- II.1 Symmetric R-spaces and their noncompact duals.- II.2 Sylvester's law of inertia in simple GLA's.- II.3 Generalized conformal structures and causal structures.- III Pseudo-Hermitian Symmetric Spaces.- III.1 Pseudo-Hermitian spaces and nonconvex Siegel domains.- III.2 Simple reducible pseudo-Hermitian symmetric spaces.- References.- III Function Spaces on Bounded Symmetric Domains by Adam Kordnyi.- I Bergman Kernel and Bergman Metric.- I.1 Domains in Cr".- 1.2 Bergman kernel, reproducing kernels.- I.3 The Bergman metric.- II Symmetric Domains and Symmetric Spaces.- II.1 Basic facts, definitions.- II.2 Riemannian symmetric spaces.- II.3 Theory of oiLa's.- II.4 OiLa's of bounded symmetric domains.- II.5 Cartan subalgebras.- III Construction of the Hermitian Symmetric Spaces.- III.1 The Borel imbedding theorem.- III.2 The Harish-Chandra realization.- III.3 Remarks on classification.- IV Structure of Symmetric Domains.- IV.1 Restricted root system, boundary orbits.- IV.2 Decomposition under the Cayley transform.- V The Weighted Bergman Spaces.- V.1 Analysis on symmetric domains.- V.2 Decomposition under K.- V.3 Spaces of holomorphic functions.- VI Differential Operators.- VI.1 Properties of ?s.- VI.2 Invariant differential operators on ?.- VI.3 Further results on $$ \mathbb{D}$$(?).- VI.4 Extending D? to p+.- VII Function Spaces.- VII.1 The holomorphic discrete series.- VII.2 Analytic continuation of the holomorphic discrete series.- VII.3 Explicit formulas for the inner products.- VII.4 L9-spaces and Bergman type projections.- VII.5 Some questions of duality.- VII.6 Further results.- References.- IV The Heat Kernels of Non Compact Symmetric Spaces by Qi-keng Lu.- I Introduction.- II The Laplace-Beltrami Operator in Various Coordinates.- III The Integral Transformations.- IV The Heat Kernel of the Hyperball R?(m, n).- V The Harmonic Forms on the Complex Grassmann Manifold.- VI The Horo-hypercircle Coordinate of a Complex Hyperball.- VII The Heat Kernel of RII(m).- VIII The Matrix Representation of NIRGSS.- References.- V Jordan Triple Systems by Guy Roos.- I Polynomial Identities.- I.1 Definition of Jordan triple systems.- I.2 Identities of minimal degree.- 1.3 Jordan representations and duality.- 1.4 The fundamental identity of degree 7.- 1.5 The Bergman operator.- II Jordan Algebras.- II.1 Jordan algebras arising from a JTS.- II.2 Identities in a Jordan algebra.- II.3 The JTS associated to a Jordan algebra.- III The Quasi-inverse.- III.1 Quasi-invertibility in a Jordan algebra.- 111.2 Quasi-invertibility in a JTS.- 11I.3 Identities for the quasi-inverse.- 1II.4 Differential equations.- 1I1.5 Addition formulas.- IV The Generic Minimal Polynomial.- IV.1 Unital Jordan algebras.- IV.2 General Jordan algebras.- IV.3 Jordan triple systems.- V Tripotents and Peirce Decomposition.- V.1 Tripotent elements.- V.2 Peirce decomposition.- V.3 Orthogonality of tripotents.- V.4 Simultaneous Peirce decomposition.- VI Hermitian Positive JTS.- VI.1 Positivity.- VI.2 Spectral decomposition.- VI.3 Automorphisms.- VI.4 The spectral norm.- VI.5 Classification of Hermitian positive JTS.- VII Further Results and Open Problems.- VII.1 Schmid decomposition.- VII.2 Compactification of an hermitian positive JTS.- VII.3 Projective imbedding.- VII.4 Volume computations.- VII.5 Some open problems.- References.
- Volume
-
: sz ISBN 9783764341381
Description
This introductory text covers a number of important areas in complex analysis and geometry. Each of the five chapters unfolds from the basics to the more complex.
Table of Contents
- Part 1 Function spaces on complex semi-groups, Jacques Faraut: Hilbert spaces of holomorphic functions
- invariant cones and complex semi-groups
- positive unitary representations
- Hilbert function spaces on complex semi-groups
- Hilbert function spaces on SL(2,C)
- Hilbert function spaces on a complex semi-simple Lie group. Part 2 Graded Lie algebras and pseudo-hermitian symmetric spaces, Soji Kaneyuki: semi-simple graded Lie algebras
- symmetric R-spaces
- pseudo-hermitian symmetric spaces. Part 3 Function spaces on bounded symmetric domains, Adam Koranyi: Bergman kernel and Bergman metric
- symmetric domains and symmetric spaces
- construction of the hermitian symmetric spaces
- structure of symmetric domains
- the weighted Bergman spaces
- differential operators
- function spaces. Part 4 The heat kernels of non-compact symmetric spaces, Qi-keng Lu: introduction
- the Laplace-Beltrami operator in various co-ordinates
- the integral transformations
- the heat kernel of the hyperball Rr(m,n)
- the harmonic forms on the complex Grassmann manifold
- the horo-hypercircle coordinate of a complex hyperball
- the heat kernel of R11(m)
- the matrix representation of NIRGSS. Part 5 Jordan triple systems, Guy Ross: polynomial identities
- Jordan algebras
- the quasi-inverse
- the generic minimal polynomial
- tripotents and Pierce decomposition
- hermitian positive JTS
- further results and open problems. References.
by "Nielsen BookData"