The physics of quantum fields
Author(s)
Bibliographic Information
The physics of quantum fields
(Graduate texts in contemporary physics)
Springer, c2000
Available at / 44 libraries
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
530.143/ST722080386761
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
A gentle introduction to the physics of quantized fields and many-body physics. Based on courses taught at the University of Illinois, it concentrates on the basic conceptual issues that many students find difficult, and emphasizes the physical and visualizable aspects of the subject. While the text is intended for students with a wide range of interests, many of the examples are drawn from condensed matter physics because of the tangible character of such systems. The first part of the book uses the Hamiltonian operator language of traditional quantum mechanics to treat simple field theories and related topics, while the Feynman path integral is introduced in the second half where it is seen as indispensable for understanding the connection between renormalization and critical as well as non-perturbative phenomena.
Table of Contents
1 Discrete Systems.- 1.1 One-Dimensional Harmonic Crystal.- 1.1.1 Normal Modes.- 1.1.2 Harmonic Oscillator.- 1.1.3 Annihilation and Creation Operators for Normal Modes.- 1.2 Continuum Limit.- 1.2.1 Sums and Integrals.- 1.2.2 Continuum Fields.- 2 Relativistic Scalar Fields.- 2.1 Conventions.- 2.2 The Klein-Gordon Equation.- 2.2.1 Relativistic Normalization.- 2.2.2 An Inner Product.- 2.2.3 Complex Scalar Fields.- 2.3 Symmetries and Noether's Theorem.- 2.3.1 Internal Symmetries.- 2.3.2 Space-Time Symmetries.- 3 Perturbation Theory.- 3.1 Interactions.- 3.2 Perturbation Theory.- 3.2.1 Interaction Picture.- 3.2.2 Propagators and Time-Ordered Products.- 3.3 Wick's Theorem.- 3.3.1 Normal Products.- 3.3.2 Wick's Theorem.- 3.3.3 Applications.- 4 Feynman Rules.- 4.1 Diagrams.- 4.1.1 Diagrams in Space-time.- 4.1.2 Diagrams in Momentum Space.- 4.2 Scattering Theory.- 4.2.1 Cross-Sections.- 4.2.2 Decay of an Unstable Particle.- 5 Loops, Unitarity, and Analyticity.- 5.1 Unitarity of the S Matrix.- 5.2 The Analytic S Matrix.- 5.2.1 Origin of Analyticity.- 5.2.2 Unitarity and Branch Cuts.- 5.2.3 Resonances, Widths, and Lifetimes.- 5.3 Some Loop Diagrams.- 5.3.1 Wick Rotation.- 5.3.2 Feynman Parameters.- 5.3.3 Dimensional Regularization.- 6 Formal Developments.- 6.1 Gell-Mann Low Theorem.- 6.2 Lehmann-Kallen Spectral Representation.- 6.3 LSZ Reduction Formulae.- 6.3.1 Amputation of External Legs.- 6.3.2 In and Out States and Fields.- 6.3.3 Borcher's Classes.- 7 Fermions.- 7.1 Dirac Equation.- 7.2 Spinors, Tensors, and Currents.- 7.2.1 Field Bilinears.- 7.2.2 Conservation Laws.- 7.3 Holes and the Dirac Sea.- 7.3.1 Positive and Negative Energies.- 7.3.2 Holes.- 7.4 Quantization.- 7.4.1 Normal and Time-Ordered Products.- 8 QED.- 8.1 Quantizing Maxwell's Equations.- 8.1.1 Hamiltonian Formalism.- 8.1.2 Axial Gauge.- 8.1.3 Lorentz Gauge.- 8.2 Feynman Rules for QED.- 8.2.1 Moller Scattering.- 8.3 Ward Identity and Gauge Invariance.- 8.3.1 The Ward Identity.- 8.3.2 Applications.- 9 Electrons in Solids.- 9.1 Second Quantization.- 9.2 Fermi Gas and Fermi Liquid.- 9.2.1 One-Particle Density Matrix.- 9.2.2 Linear Response.- 9.2.3 Diagram Approacha.- 9.2.4 Applications.- 9.3 Electrons and Phonons.- 10 Nonrelativistic Bosons.- 10.1 The Boson Field.- 10.2 Spontaneous Symmetry Breaking.- 10.3 Dilute Bose Gas.- 10.3.1 Bogoliubov Transfomation.- 10.3.2 Field Equations.- 10.3.3 Quantization.- 10.3.4 Landau Criterion for Superfluidity.- 10.3.5 Normal and Superfluid Densities.- 10.4 Charged Bosons.- 10.4.1 Gross-Pitaevskii Equation.- 10.4.2 Vortices.- 10.4.3 Connection with Fluid Mechanics.- 11 Finite Temperature.- 11.1 Partition Functions.- 11.2 Worldlines.- 11.3 Matsubara Sums.- 12 Path Integrals.- 12.1 Quantum Mechanics of a Particle.- 12.1.1 Real Time.- 12.1.2 Euclidean Time.- 12.2 Gauge Invariance and Operator Ordering.- 12.3 Correlation Functions.- 12.4 Fields.- 12.5 Gaussian Integrals and Free Fields.- 12.5.1 Real Fields.- 12.5.2 Complex Fields.- 12.6 Perturbation Theory.- 13 Functional Methods.- 13.1 Generating Functionals.- 13.1.1 Effective Action.- 13.2 Ward Identities.- 13.2.1 Goldstone's Theorem.- 14 Path Integrals for Fermions.- 14.1 Berezin Integrals.- 14.1.1 A Simple Supersymmetry.- 14.2 Fermionic Coherent States.- 14.3 Superconductors.- 14.3.1 Effective Action.- 15 Lattice Field Theory.- 15.1 Boson Fields.- 15.2 Random Walks.- 15.3 Interactions and Bose Condensation.- 15.3.1 Rotational Invariance.- 15.4 Lattice Fermions.- 15.4.1 No Chiral Lattice Fermions.- 16 The Renormalization Group.- 16.1 Transfer Matrices.- 16.1.1 Continuum Limit.- 16.1.2 Two-Dimensional Ising Model.- 16.2 Block Spins and Renormalization Group.- 16.2.1 Correlation Functions.- 17 Fields and Renormalization.- 17.1 The Free-Field Fixed Point.- 17.2 The Gaussian Model.- 17.3 General Method.- 17.4 Nonlinear ? Model.- 17.4.1 Renormalizing.- 17.4.2 Solution of the RGE.- 17.5 Renormalizing ??4.- 18 Large N Expansions.- 18.1 O(N) Linear ?-Model.- 18.2 Large N Expansions.- 18.2.1 Linear vs. Nonlinear ?-Models.- A Relativistic State Normalization.- B The General Commutator.- C Dimensional Regularization.- C.1 Analytic Continuation and Integrals.- C.2 Propagators.- D Spinors and the Principle of the Sextant.- D.1 Constructing the ?-Matrices.- D.2 Basic Theorem.- D.3 Chirality.- E Indefinite Metric.- F Phonons and Momentum.- G Determinants in Quantum Mechanics.
by "Nielsen BookData"