Theory of computational complexity
著者
書誌事項
Theory of computational complexity
(Wiley-Interscience series in discrete mathematics and optimization)
Wiley, c2000
大学図書館所蔵 全41件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 453-473) and index
内容説明・目次
内容説明
A complete treatment of fundamentals and recent advances in complexity theory Complexity theory studies the inherent difficulties of solving algorithmic problems by digital computers. This comprehensive work discusses the major topics in complexity theory, including fundamental topics as well as recent breakthroughs not previously available in book form. Theory of Computational Complexity offers a thorough presentation of the fundamentals of complexity theory, including NP-completeness theory, the polynomial-time hierarchy, relativization, and the application to cryptography. It also examines the theory of nonuniform computational complexity, including the computational models of decision trees and Boolean circuits, and the notion of polynomial-time isomorphism. The theory of probabilistic complexity, which studies complexity issues related to randomized computation as well as interactive proof systems and probabilistically checkable proofs, is also covered.
Extraordinary in both its breadth and depth, this volume: Provides complete proofs of recent breakthroughs in complexity theory Presents results in well-defined form with complete proofs and numerous exercises Includes scores of graphs and figures to clarify difficult material An invaluable resource for researchers as well as an important guide for graduate and advanced undergraduate students, Theory of Computational Complexity is destined to become the standard reference in the field.
目次
UNIFORM COMPLEXITY. Models of Computation and Complexity Classes. NP-Completeness. The Polynomial-Time Hierarchy and Polynomial Space. Structure of NP. NONUNIFORM COMPLEXITY. Decision Trees. Circuit Complexity. Polynomial-Time Isomorphism. PROBABILISTIC COMPLEXITY. Probabilistic Machines and Complexity Classes. Complexity of Counting. Interactive Proof Systems. Probabilistically Checkable Proofs and NP-Hard Optimization Problems. Bibliography. Index.
「Nielsen BookData」 より