Foundations of quantum group theory
著者
書誌事項
Foundations of quantum group theory
Cambridge University Press, 2000
1st pbk. ed
大学図書館所蔵 全24件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Originally published: 1995
Includes bibliographical references and index
内容説明・目次
内容説明
Now in paperback, this is a graduate level text for theoretical physicists and mathematicians which systematically lays out the foundations for the subject of Quantum Groups in a clear and accessible way. The topic is developed in a logical manner with quantum groups (Hopf Algebras) treated as mathematical objects in their own right. After formal definitions and basic theory, the book goes on to cover such topics as quantum enveloping algebras, matrix quantum groups, combinatorics, cross products of various kinds, the quantum double, the semiclassical theory of Poisson-Lie groups, the representation theory, braided groups and applications to q-deformed physics. Explicit proofs and many examples will allow the reader quickly to pick up the techniques needed for working in this exciting new field.
目次
- Introduction
- 1. Definition of Hopf algebras
- 2. Quasitriangular Hopf algebras
- 3. Quantum enveloping algebras
- 4. Matrix quantum groups
- 5. Quantum random walks and combinatorics
- 6. Bicrossproduct Hopf algebras
- 7. Quantum double and double cross products
- 8. Lie bialgebras and Poisson brackets
- 9. Representation theory
- 10. Braided groups and q-deformation
- References
- Symbols
- Indexes.
「Nielsen BookData」 より