Lectures on probability theory and statistics : École d'eté de probabilités de Saint-Flour XXVIII-1998
Author(s)
Bibliographic Information
Lectures on probability theory and statistics : École d'eté de probabilités de Saint-Flour XXVIII-1998
(Lecture notes in mathematics, 1738)
Springer, c2000
Available at / 84 libraries
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
L/N||LNM||173878800020
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references
Description and Table of Contents
Description
This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during 17th Aug. - 3rd Sept. 1998.
The contents of the three courses are the following:
- Continuous martingales on differential manifolds.
- Topics in non-parametric statistics.
- Free probability theory.
The reader is expected to have a graduate level in probability theory and statistics. This book is of interest to PhD students in probability and statistics or operators theory as well as for researchers in all these fields. The series of lecture notes from the Saint-Flour Probability Summer School can be considered as an encyclopedia of probability theory and related fields.
Table of Contents
Varietes, vecteurs, covecteurs, diffuseurs, codiffuseurs.- Semimartingales dans une variete et geometrie d'ordre 2.- Connexions et martingales.- Fonctions convexes et comportement des martingales.- Mouvements browniens et applications harmoniques.- Preface.- Estimating regression functions from Hoelder balls.- Estimating regression functions from Sobolev balls.- Spatial adaptive estimation on Sobolev balls.- Estimating signals satisfying differential inequalities.- Aggregation of estimates, I.- Aggregation of estimates, II.- Estimating functionals, I.- Estimating functionals, II.- Noncommutative probability and operator algebra background.- Addition of freely independent noncommutative random variables.- Multiplication of freely independent noncommutative random variables.- Generalized canonical form, noncrossing partitions.- Free independence with amalgamation.- Some basic free processes.- Random matrices in the large N limit.- Free entropy.
by "Nielsen BookData"