Nonlinear physics with Maple for scientists and engineers

書誌事項

Nonlinear physics with Maple for scientists and engineers

Richard H. Enns, George C. McGuire

Birkhäuser, c2000

2nd ed

  • : us
  • : sz

大学図書館所蔵 件 / 12

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [627]-639) and index

内容説明・目次

巻冊次

: us ISBN 9780817641191

内容説明

Philosophy of the Text This text presents an introductory survey of the basic concepts and applied mathematical methods of nonlinear science as well as an introduction to some simple related nonlinear experimental activities. Students in engineering, phys ics, chemistry, mathematics, computing science, and biology should be able to successfully use this book. In an effort to provide the reader with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of the Maple software sys tem applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The CD-ROM provided with this book gives a wide variety of illustrative non linear examples solved with Maple. In addition, numerous annotated examples are sprinkled throughout the text and also placed on the CD. An accompanying set of experimental activities keyed to the theory developed in Part I of the book is given in Part II. These activities allow the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated.

目次

I Theory.- 1 Introduction.- 1.1 It's a Nonlinear World.- 1.2 Symbolic Computation.- 1.2.1 Examples of Maple Operations.- 1.2.2 Getting Maple Help.- 1.2.3 Use of Maple in Studying Nonlinear Physics.- 1.3 Nonlinear Experimental Activities.- 1.4 Scope of Part I (Theory).- 2 Nonlinear Systems. Part I.- 2.1 Nonlinear Mechanics.- 2.1.1 The Simple Pendulum.- 2.1.2 The Eardrum.- 2.1.3 Nonlinear Damping.- 2.1.4 Nonlinear Lattice Dynamics.- 2.2 Competition Phenomena.- 2.2.1 Volterra-Lotka Competition Equations.- 2.2.2 Population Dynamics of Fox Rabies in Europe.- 2.2.3 Selection and Evolution of Biological Molecules.- 2.2.4 Laser Beam Competition Equations.- 2.2.5 Rapoport's Model for the Arms Race.- 2.3 Nonlinear Electrical Phenomena.- 2.3.1 Nonlinear Inductance.- 2.3.2 An Electronic Oscillator (the Van der Pol Equation).- 2.4 Chemical and Other Oscillators.- 2.4.1 Chemical Oscillators.- 2.4.2 The Beating Heart.- 3 Nonlinear Systems. Part II.- 3.1 Pattern Formation.- 3.1.1 Chemical Waves.- 3.1.2 Snowflakes and Other Fractal Structures.- 3.1.3 Rayleigh-Benard Convection.- 3.1.4 Cellular Automata and the Game of Life.- 3.2 Solitons.- 3.2.1 Shallow Water Waves (KdV and Other Equations).- 3.2.2 Sine-Gordon Equation.- 3.2.3 Self-Induced Transparency.- 3.2.4 Optical Solitons.- 3.2.5 The Jovian Great Red Spot (GRS).- 3.2.6 The Davydov Soliton.- 3.3 Chaos and Maps.- 3.3.1 Forced Oscillators.- 3.3.2 Lorenz and Roessler Systems.- 3.3.3 Poincare Sections and Maps.- 3.3.4 Examples of One- and Two-Dimensional Maps.- 4 Topological Analysis.- 4.1 Introductory Remarks.- 4.2 Types of Simple Singular Points.- 4.3 Classifying Simple Singular Points.- 4.3.1 Poincare's Theorem for the Vortex (Center).- 4.4 Examples of Phase Plane Analysis.- 4.4.1 The Simple Pendulum.- 4.4.2 The Laser Competition Equations.- 4.4.3 Example of a Higher Order Singularity.- 4.5 Bifurcations.- 4.6 Isoclines.- 4.7 3-Dimensional Nonlinear Systems.- 5 Analytic Methods.- 5.1 Introductory Remarks.- 5.2 Some Exact Methods.- 5.2.1 Separation of Variables.- 5.2.2 The Bernoulli Equation.- 5.2.3 The Riccati Equation.- 5.2.4 Equations of the Structure d2y/dx2 = f (y).- 5.3 Some Approximate Methods.- 5.3.1 Maple Generated Taylor Series Solution.- 5.3.2 The Perturbation Approach: Poisson's Method.- 5.3.3 Lindstedt's Method.- 5.4 The Krylov-Bogoliubov (KB) Method.- 5.5 Ritz and Galerkin Methods.- 6 The Numerical Approach.- 6.1 Finite-Difference Approximations.- 6.2 Euler and Modified Euler Methods.- 6.2.1 Euler Method.- 6.2.2 The Modified Euler Method.- 6.3 Runge-Kutta (RK) Methods.- 6.3.1 The Basic Approach.- 6.3.2 Examples of Common RK Algorithms.- 6.4 Adaptive Step Size.- 6.4.1 A Simple Example.- 6.4.2 The Step Doubling Approach.- 6.4.3 The RKF 45 Algorithm.- 6.5 Stiff Equations.- 6.6 Implicit and Semi-Implicit Schemes.- 7 Limit Cycles.- 7.1 Stability Aspects.- 7.2 Relaxation Oscillations.- 7.3 Bendixson's First Theorem.- 7.3.1 Bendixson's Negative Criterion.- 7.3.2 Proof of Theorem.- 7.3.3 Applications.- 7.4 The Poincare-Bendixson Theorem.- 7.4.1 Poincare-Bendixson Theorem.- 7.4.2 Application of the Theorem.- 7.5 The Brusselator Model.- 7.5.1 Prigogine-Lefever (Brusselator) Model.- 7.5.2 Application of the Poincare-Bendixson Theorem.- 7.6 3-Dimensional Limit Cycles.- 8 Forced Oscillators.- 8.1 Duffing's Equation.- 8.1.1 The Harmonic Solution.- 8.1.2 The Nonlinear Response Curves.- 8.2 The Jump Phenomenon and Hysteresis.- 8.3 Subharmonic & Other Periodic Oscillations.- 8.4 Power Spectrum.- 8.5 Chaotic Oscillations.- 8.6 Entrainment and Quasiperiodicity.- 8.6.1 Entrainment.- 8.6.2 Quasiperiodicity.- 8.7 The Roessler and Lorenz Systems.- 8.7.1 The Roessler Attractor.- 8.7.2 The Lorenz Attractor.- 8.8 Hamiltonian Chaos.- 8.8.1 Hamiltonian Formulation of Classical Mechanics.- 8.8.2 The Henon-Heiles Hamiltonian.- 9 Nonlinear Maps.- 9.1 Introductory Remarks.- 9.2 The Logistic Map.- 9.2.1 Introduction.- 9.2.2 Geometrical Representation.- 9.3 Fixed Points and Stability.- 9.4 The Period-Doubling Cascade to Chaos.- 9.5 Period Doubling in the Real World.- 9.6 The Lyapunov Exponent.- 9.7 Stretching and Folding.- 9.8 The Circle Map.- 9.9 Chaos versus Noise.- 9.10 2-Dimensional Maps.- 9.10.1 Introductory Remarks.- 9.10.2 Classification of Fixed Points.- 9.10.3 Delayed Logistic Map.- 9.10.4 Mandelbrot Map.- 9.11 Mandelbrot and Julia Sets.- 9.12 Nonconservative versus Conservative Maps.- 9.13 Controlling Chaos.- 9.14 3-Dimensional Maps: Saturn's Rings.- 10 Nonlinear PDE Phenomena.- 10.1 Introductory Remarks.- 10.2 Burgers' Equation.- 10.3 Backlund Transformations.- 10.3.1 The Basic Idea.- 10.3.2 Examples.- 10.3.3 Nonlinear Superposition.- 10.4 Solitary Waves.- 10.4.1 The Basic Approach.- 10.4.2 Phase Plane Analysis.- 10.4.3 KdV Equation.- 10.4.4 Sine-Gordon Equation.- 10.4.5 The Three-Wave Problem.- 11 Numerical Simulation.- 11.1 Finite Difference Approximations.- 11.2 Explicit Methods.- 11.2.1 Diffusion Equation.- 11.2.2 Fisher's Nonlinear Diffusion Equation.- 11.2.3 Klein-Gordon Equation.- 11.2.4 KdV Solitary Wave Collisions.- 11.3 Von Neumann Stability Analysis.- 11.3.1 Linear Diffusion Equation.- 11.3.2 Burgers' Equation.- 11.4 Implicit Methods.- 11.5 Method of Characteristics.- 11.5.1 Colliding Laser Beams.- 11.5.2 General Equation.- 11.5.3 Sine-Gordon Equation.- 11.6 Higher Dimensions.- 12 Inverse Scattering Method.- 12.1 Lax's Formulation.- 12.2 Application to KdV Equation.- 12.2.1 Direct Problem.- 12.2.2 Time Evolution of the Scattering Data.- 12.2.3 The Inverse Problem.- 12.3 Multi-Soliton Solutions.- 12.4 General Input Shapes.- 12.5 The Zakharov-Shabat/AKNS Approach.- II Experimental Activities.- to Nonlinear Experiments.- 1 Spin Toy Pendulum.- 2 Driven Eardrum.- 3 Nonlinear Damping.- 4 Anharmonic Potential.- 5 Iron Core Inductor.- 6 Nonlinear LRC Circuit.- 7 Tunnel Diode Negative Resistance Curve.- 8 Tunnel Diode Self-Excited Oscillator.- 9 Forced Duffing Equation.- 10 Focal Point Instability.- 11 Compound Pendulum.- 12 Stable Limit Cycle.- 13 Van der Pol Limit Cycle.- 14 Relaxation Oscillations: Neon Bulb.- 15 Relaxation Oscillations: Drinking Bird.- 16 Relaxation Oscillations: Tunnel Diode.- 17 Hard Spring.- 18 Nonlinear Resonance Curve: Mechanical.- 19 Nonlinear Resonance Curve: Electrical.- 20 Nonlinear Resonance Curve: Magnetic.- 21 Subharmonic Response: Period Doubling.- 22 Diode: Period Doubling.- 23 Five-Well Magnetic Potential.- 24 Power Spectrum.- 25 Entrainment and Quasiperiodicity.- 26 Quasiperiodicity.- 27 Chua's Butterfly.- 28 Route to Chaos.- 29 Driven Spin Toy.- 30 Mapping.
巻冊次

: sz ISBN 9783764341190

内容説明

Including 74 example files of MAPLE, 60 annotated MAPLE worksheets, 400 problems, and 30 experimental "hands-on" activities, this volume requires no prior knowledge of MAPLE and is designed for students in engineering, physics, chemistry, mathematics, computer science and biology.

目次

  • Part 1 Theory: introduction
  • non-linear systems - part I
  • non-linear systems - part II
  • topological analysis
  • analytic methods
  • the numerical approach
  • limit cycles
  • forced oscillators
  • non-linear maps
  • non-linear PDE phenomena
  • numerical simulation
  • inverse scattering method. Part 2 Experimental activities: introduction to non-linear experiments - spin toy pendulum
  • driven eardrum
  • non-linear damping
  • enharmonic potential
  • iron core inductor
  • non-linear LRC circuit
  • tunnel diode negative resistance curve
  • tunnel diode self-excited oscillator
  • forced Duffing equation
  • focal point instability
  • compound pendulum
  • stable limit cycle
  • Van der Pol limit cycle relaxation oscillations - neon bulb
  • relaxation oscillations - drinking bird
  • relaxation oscillations - tunnel diode
  • hard spring
  • non-linear resonance curve - mechanical
  • non-linear resonance curve - electrical
  • non-linear resonance curve - magnetic
  • sub-harmonic response - period doubling
  • diode - period doubling
  • five-well magnetic potential
  • power spectrum
  • entrainment and quasiperiodicity
  • quasiperiodicity
  • Chua's butterfly
  • route to chaos
  • driven spin toy
  • mapping.

「Nielsen BookData」 より

詳細情報

ページトップへ