Generalized linear models : a Bayesian perspective
著者
書誌事項
Generalized linear models : a Bayesian perspective
(Biostatistics, 5)
Marcel Dekker, c2000
大学図書館所蔵 件 / 全12件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographies and index
内容説明・目次
内容説明
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
目次
Part 1 Extending the GLMs. Part 2 Categorical and longitudinal data. Part 3 Semiparametric approaches. Part 4 Model diagnositics and value selection in GLMs. Part 5 Challenging problems in GLMs
「Nielsen BookData」 より