A new construction of homogeneous quaternionic manifolds and related geometric structures

Bibliographic Information

A new construction of homogeneous quaternionic manifolds and related geometric structures

Vicente Cortés

(Memoirs of the American Mathematical Society, no. 700)

American Mathematical Society, 2000

Available at  / 19 libraries

Search this Book/Journal

Note

"September 2000, volume 147, number 700 (end of 4 numbers)"

Bibliography: p. 59-63

Description and Table of Contents

Description

Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\!\ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak {spin} (V)$-equivariant linear map $\Pi: \wedge^2 W\rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quatemionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms.In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quatermionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z\rightarrow M$ and the canonical ${\mathrm SO} (3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base.More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z\rightarrow\bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak {spin} (V)$-equivariant linear map $\Pi: \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.

Table of Contents

Introduction Extended Poincare algebras The homogeneous quaternionic manifold $(M,Q)$ associated to an extended Poincare algebra Bundles associated to the quaternionic manifold $(M,Q)$ Homogeneous quaternionic supermanifolds associated to superextended Poincare algebras Appendix. Supergeometry Bibliography.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA48009529
  • ISBN
    • 0821821113
  • LCCN
    00034993
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Providence, R.I., USA
  • Pages/Volumes
    vii, 63 p.
  • Size
    26 cm
  • Subject Headings
  • Parent Bibliography ID
Page Top