Handbook of advanced plasma processing techniques
Author(s)
Bibliographic Information
Handbook of advanced plasma processing techniques
(Physics and astronomy online library)
Springer, c2000
Available at / 23 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Pattern transfer by dry etching and plasma-enhanced chemical vapor de position are two of the cornerstone techniques for modern integrated cir cuit fabrication. The success of these methods has also sparked interest in their application to other techniques, such as surface-micromachined sen sors, read/write heads for data storage and magnetic random access memory (MRAM). The extremely complex chemistry and physics of plasmas and their interactions with the exposed surfaces of semiconductors and other materi als is often overlooked at the manufacturing stage. In this case, the process is optimized by an informed "trial-and-error" approach which relies heavily on design-of-experiment techniques and the intuition of the process engineer. The need for regular cleaning of plasma reactors to remove built-up reaction or precursor gas products adds an extra degree of complexity because the interaction of the reactive species in the plasma with the reactor walls can also have a strong effect on the number of these species available for etching or deposition. Since the microelectronics industry depends on having high process yields at each step of the fabrication process, it is imperative that a full understanding of plasma etching and deposition techniques be achieved.
Table of Contents
1 Some Fundamental Aspects of Plasma-Assisted Etching.- 1.1 Introduction.- 1.2 The Evolution of Plasma Etching Equipment.- 1.2.1 The "Barrel" Systems.- 1.2.2 Planar and Cylindrical Diode Systems.- 1.2.3 Planar Triode Systems.- 1.2.4 Dual Frequency Planar Triode Systems.- 1.2.5 Inductively Coupled Plasmas, Wave Generated Plasmas, etc.- 1.3 The Role of Ions in Reactive Ion Etching.- 1.3.1 Ion-Assisted Gas-Surface Chemistry and the Resulting Etching Anisotropy.- 1.3.2 Mechanistic Aspects of Ion-Assisted Gas-Surface Chemistry.- 1.3.3 Other Factors That Influence Etching Anisotropy.- 1.4 The Influence of the Reactor Walls and Other Surfaces.- 1.4.1 The Etching Process.- 1.4.2 Polymer Deposition.- 1.4.3 Surface-Catalyzed Atom-Atom Recombination.- 1.5 Ion Beam-Based Methods.- 1.6 Summary.- References.- 2 Plasma Fundamentals for Materials Processing.- 2.1 Introduction.- 2.2 Single Particle Motion.- 2.3 Collision Processes.- 2.4 Velocity Distributions.- 2.5 Sheaths.- 2.6 Plasma Transport.- 2.7 Dielectric Properties.- 2.8 Plasma Sources for Thin Films Processing.- 2.8.1 Capacitive Sources.- 2.8.2 High Density Sources.- 2.8.3 Inductive Sources.- 2.8.4 ECR Sources.- 2.8.5 Helicon Sources.- 2.8.6 Wave Sources.- 2.8.7 Downstream Sources.- References.- 3 Plasma Modeling.- 3.1 Introduction.- 3.2 Historical Perspective.- 3.3 Plasma Modeling Issues.- 3.3.1 Well Mixed Reactor Models and Applications (0-D).- 3.3.2 One-Dimensional Models and Applications.- 3.3.3 Two-Dimensional Models and Applications.- 3.3.4 Three-Dimensional Models and Applications.- 3.3.5 2-D and 3-D Profile Evolution Models and Applications.- 3.4 Chemical Reaction Mechanisms.- 3.4.1 Gas-Phase Kinetic and Transport Processes.- 3.4.2 Surface Chemistry.- 3.4.3 Reaction Mechanism Validation, Tuning, and Reduction.- 3.4.4 Sample Reaction Mechanism.- 3.5 Examples of Application of Plasma Modeling to Design or Optimization.- 3.5.1 Optimization of Plasma Cleaning Process to Reduce Reactor Emissions.- 3.5.2 Optimization of Chemical Downstream Etch Process Conditions.- 3.5.3 Reactor Design: Scaling-Up from 200 to 300 mm Wafers.- 3.5.4 Mapping Pressure Gradients in Reactor Pump Port and Inlet Regions.- 3.6 Future Directions of Plasma Modeling.- References.- 4 Plasma Reactor Modeling.- 4.1 Introduction.- 4.2 Reactor Scale Model.- 4.2.1 A Review of Various Approaches.- 4.2.2 Global Model.- 4.2.3 Continuum Reactor Model.- 4.2.4 Hybrid Model.- 4.3 Feature Level Modeling.- 4.4 Database Needs.- 4.5 Concluding Remarks.- References.- 5 Overview of Plasma Diagnostic Techniques.- 5.1 Introduction.- 5.2 Plasma Electrical Characterization.- 5.2.1 Electrical Diagnostics.- 5.2.2 Microwave Diagnostic Techniques.- 5.2.3 Ion-Energy Analyzers.- 5.3 Optical Diagnostic Techniques.- 5.3.1 Optical Emission.- 5.3.2 Optical Absorption Techniques.- 5.3.3 Laser-Induced Fluorescence.- 5.3.4 Negative Ion Photodetachment.- 5.3.5 Optogalvanic Spectroscopy.- 5.3.6 Thomson Scattering.- References.- 6 Mass Spectrometric Characterization of Plasma Etching Processes.- 6.1 Introduction.- 6.2 Application to Fundamental Studies.- 6.2.1 Silicon/Fluorine.- 6.2.2 Silicon/Chlorine.- 6.2.3 Gallium Arsenide/Chlorine.- 6.3 Application in Etch Processing Reactors.- 6.3.1 General Description of Experiments.- 6.3.2 IV-IV Semiconductors.- 6.3.3 III-V Semiconductors.- 6.3.4 II-VI Semiconductors.- 6.3.5 Metals and Perovskites.- 6.3.6 Issues in Application and Interpretation.- 6.4 Summary and Future Directions.- References.- 7 Fundamentals of Plasma Process-Induced Charging and Damage.- 7.1 Introduction.- 7.2 The Origin of Pattern-Dependent Charging.- 7.2.1 Differences in Ion and Electron Angular Distributions.- 7.2.2 Charging as a Result of Current Imbalance.- 7.2.3 Electron Shading Effects.- 7.3 The Notching Effect.- 7.3.1 Observations and Mechanisms.- 7.3.2 Phenomena that Influence Notching.- 7.3.3 Results from Self-Consistent Charging Simulations.- 7.3.4 Validation.- 7.4 Other Profile Effects Influenced by Charging.- 7.4.1 Reactive Ion Etching Lag.- 7.4.2 Microtrenching.- 7.5 Gate Oxide Degradation.- 7.5.1 The Driving Force for Current Injection.- 7.5.2 Tunneling Current Transients.- 7.5.3 The Influence of Electron and Ion Temperature.- 7.6 Charging Reduction Methodology.- 7.7 Concluding Remarks.- 7.7.1 Historical Perspective.- 7.7.2 Will Charging Problems Persist?.- References.- 8 Surface Damage Induced by Dry Etching.- 8.1 Introduction.- 8.2 Surface Damage in Si.- 8.2.1 Changes in Electrical Characteristics due to Dry Etching.- 8.2.2 Defects Evaluated by Surface Analysis.- 8.2.3 Modeling of Etch-Induced Damage.- 8.3 Surface Damage in III-V Semiconductors.- 8.3.1 Damage Dependence on Etch Conditions.- 8.3.2 Effects of Etch Time and Materials on Defect Generation.- 8.3.3 Changes in Electrical and Optical Characteristics.- 8.4 Damage Removal.- 8.4.1 Wet Etching, Dry Etching, Thermal Annealing, and Two-Step Etching.- 8.4.2 Passivation by Low-Energy Reactive Species.- 8.5 Summary.- References.- 9 Photomask Etching.- 9.1 Introduction.- 9.2 Optical Lithography.- 9.2.1 Photomask Basics.- 9.2.2 Chrome Photomasks.- 9.2.3 MoSi Photomasks.- 9.2.4 Phase Shift Mask Technology.- 9.3 X-Ray Lithography.- 9.3.1 X-Ray Lithography Basics.- 9.3.2 Gold Absorber-Based Masks.- 9.3.3 Refractory Masks.- 9.3.4 Amorphous Refractory-Based Masks.- 9.3.5 Thermal Characteristics of a Mask Etch Process.- 9.3.6 Hard Mask Materials.- 9.4 SCALPEL.- 9.4.1 SCALPEL Basics.- 9.4.2 SCALPEL Mask Blank Processing.- 9.4.3 SCALPEL Mask Pattern Transfer.- 9.5 EUVL.- 9.5.1 EUVL Basics.- 9.5.2 EUVL Masks.- 9.5.3 EUV Mask Pattern Transfer.- 9.6 Ion Projection Lithography.- 9.6.1 Ion Projection Lithography Basics.- 9.6.2 IPL Masks.- 9.6.3 IPL Mask Pattern Transfer.- 9.7 IPL Mask Distortion Issues.- 9.8 Conclusion.- References.- 10 Bulk Si Micromachining for Integrated Microsystems and MEMS Processing.- 10.1 Introduction.- 10.2 Etch Technologies.- 10.2.1 Wet Chemical Etching.- 10.2.2 Plasma Etching.- 10.2.3 Reactive Ion Etching.- 10.2.4 High-Density Plasma Etching.- 10.2.5 Deep Reactive Ion Etching.- 10.3 ECR Results.- 10.3.1 ECR Experimental.- 10.3.2 ECR Process Parameters.- 10.3.3 ECR Process Applications.- 10.4 DRIE Results.- 10.4.1 DRIE versus ICP Etch Comparison.- 10.4.2 Etch Rates and Selectivity to Masking Materials.- 10.4.3 Aspect Ratio Dependent Etching (ARDE) in DRIE.- 10.4.4 Etch Selectivities.- 10.5 DRIE Applications.- 10.5.1 Chemical Sensing Devices.- 10.5.2 Advanced Packaging.- 10.5.3 SOI DRIE Etching.- 10.6 Conclusions.- References.- 11 Plasma Processing of III-V Materials.- 11.1 Introduction.- 11.2 Dry Etching Techniques.- 11.2.1 Ion Beam Etching.- 11.2.2 Reactive Ion Etching.- 11.2.3 High-Density Plasma Reactive Ion Etching.- 11.3 Masking Materials and Methods.- 11.4 Dry Etching Chemistries.- 11.5 Dry Etching of GaAs and Related Materials.- 11.6 Dry Etching of InP and Related Materials.- 11.7 Dry Etching of GaN and Related Materials.- 11.8 Selective Dry Etching of III-V Materials.- 11.8.1 GaAs on AlGaAs.- 11.8.2 InGaAs on InAlAs.- 11.8.3 GaN on AlGaN.- 11.9 Conclusion.- References.- 12 Ion Beam Etching of Compound Semiconductors.- 12.1 Introduction.- 12.2 Definitions.- 12.2.1 Ion Beam Etching.- 12.2.2 Reactive Ion Beam Etching.- 12.2.3 Chemically Assisted Ion Beam Etching.- 12.2.4 Sputter Yield.- 12.3 Ion Sources.- 12.4 Historic Development.- 12.5 Grid Design, Beam Uniformity, and Divergence.- 12.6 Brief Overview of Etching Kinetics and Chemistry.- 12.7 Surface Quality and Etch Masking.- 12.8 RIBE Etch Technology.- 12.8.1 RIBE of GaAs and AlGaAs.- 12.8.2 RIBE of InP.- 12.8.3 RIBE of InGaAsP and InP.- 12.8.4 RIBE of AlGaInP, GaInP and AlGaInAs.- 12.8.5 RIBE of (Al,Ga)Sb, (In,Ga)Sb and InAsSb.- 12.8.6 RIBE of GaP and GaN.- 12.8.7 RIBE of ZnSe and ZnS.- 12.9 CAIBE Etch Technology.- 12.9.1 CAIBE of GaAs.- 12.9.2 CAIBE of AlGaAs.- 12.9.3 CAIBE of InP and InGaAsP.- 12.9.4 CAIBE of AlGaInP and AlGaInAs.- 12.9.5 CAIBE of (Al,Ga)Sb and InSb.- 12.9.6 CAIBE of (Al,Ga)N.- 12.10 Endpoint Detection.- 12.11 Damage.- References.- 13 Dry Etching of InP Vias.- 13.1 Introduction.- 13.2 Past Difficulties in Obtaining High Rate Etching for InP.- 13.2.1 High Bias CH4-based Etching of InP.- 13.2.2 Elevated Temperature Cl-based Etching of InP.- 13.3 High Density Plasma Sources for High InP Etch Rate.- 13.3.1 Reduced Bias CH4-Based ECR Etching of InP.- 13.3.2 Addition of Cl to CH4-Based ECR Etching of InP.- 13.3.3 Low Temperature Cl-Based Etching.- 13.4 Measurement of Plasma Heating for InP Etching.- 13.4.1 Wafer Heating During High-Density Plasma Etching.- 13.4.2 Impact of Plasma Heating for InP Etching.- 13.4.3 Effects of Chamber Pressure and Wafer Temperature on Etch Rate.- 13.5 Application to Via Hole Etching.- 13.5.1 Etch Mask and Etch Characteristics.- 13.5.2 Etching Slot Vias Using a Photoresist Mask.- 13.5.3 OES for Endpoint.- 13.6 Summary.- References.- 14 Device Damage During Low Temperature High-Density Plasma Chemical Vapor Deposition.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and Discussion.- 14.4 Summary and Conclusions.- References.- 15 Dry Etching of Magnetic Materials.- 15.1 Introduction.- 15.2 Ion Milling.- 15.3 Cl2-Based ICP Etching of NiFe and Related Materials.- 15.4 Copper Dry Etching in Cl2/Ar.- 15.5 CO/NH3 Etching of Magnetic Materials.- 15.6 ECR and ICP Etching of NiMnSb.- 15.7 Dry Etching of LaCaMnOx and SmCo.- 15.8 Summary and Conclusions.- References.
by "Nielsen BookData"