Geometric aspects of probability theory and mathematical statistics
著者
書誌事項
Geometric aspects of probability theory and mathematical statistics
(Mathematics and its applications, v. 514)
Kluwer Academic, c2000
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 287-300
Includes index
内容説明・目次
内容説明
It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.
目次
Preface. 1. Convex sets in vector spaces. 2. Brunn-Minkowski inequality. 3. Convex polyhedra. 4. Two classical isoperimetric problems. 5. Some infinite-dimensional vector spaces. 6. Probability measures and random elements. 7. Convergence of random elements. 8. The structure of supports of Borel measures. 9. Quasi-invariant probability measures. 10. Anderson inequality and unimodal distributions. 11. Oscillation phenomena and extensions of measures. 12. Comparison principles for Gaussian processes. 13. Integration of vector-valued functions and optimal estimation of stochastic processes. Appendices. Bibliography. Subject Index.
「Nielsen BookData」 より